ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38154 , 2016 AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: Lead-210 distribution and lifetime in the atmosphere are not sensitive to ice in-cloud scavenging in convective updraft. Ice in-cloud scavenging in stratiform clouds reduce tropospheric (210)Pb lifetime by approximately 1 day and results in better agreements with observed surface observations and aircraft measured profiles. However, the process results in significant underestimate of (210)Pb in UT/LS.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-25449 , AeroCOM/AeroSAT Workshop; Sep 19, 2016 - Sep 27, 2016; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES; http://naames.larc.nasa.gov) is a five year NASA Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic, with the 1st field deployment in November 2015 and the 2nd in May 2016.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26208 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38040 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Clouds directly affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. This effect is an important component of global tropospheric chemistry-climate interaction, and its understanding is thus essential for predicting the feedback of climate change on tropospheric chemistry.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-27058 , International GEOS-Chem Meeting (IGC8); May 01, 2017 - May 04, 2017; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37773 , American Geophysical Union (AGU) Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The first field campaign of DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) took place in July 2011 over Baltimore-Washington Corridor (BWC). A suite of airborne remote sensing and in-situ sensors was deployed along with ground networks for mapping vertical and horizontal distribution of aerosols. Previous researches were based on a single lidar station because of the lack of regional coverage. This study uses the unique airborne HSRL (High Spectral Resolution Lidar) data to baseline PM2.5 (particulate matter of aerodynamic diameter less than 2.5 m) estimates and applies to regional air quality with satellite AOD (Aerosol Optical Depth) retrievals over BWC (6500 sq. km). The linear approximation takes into account aerosols aloft above AML (Aerosol Mixing Layer) by normalizing AOD with haze layer height (i.e., AOD/HLH). The estimated PM2.5 mass concentrations by HSRL AOD/HLH are shown within 2 RMSE (Root Mean Square Error 9.6 g/cu. m) with correlation 0.88 with the observed over BWC. Similar statistics are shown when applying HLH data from a single location over the distance of 100 km. In other words, a single lidar is feasible to cover the range of 100 km with expected uncertainties. The employment of MPLNET-AERONET (MicroPulse Lidar NETwork - AErosol RObotic NETwork) measurements at NASA GSFC produces similar statistics of PM2.5 estimates as those derived by HSRL. The synergy of active and passive remote sensing aerosol measurements provides the foundation for satellite application of air quality on a daily basis. For the optimal range of 10 km, the MODIS-estimated PM2.5 values are found satisfactory at 27 (out of 36) sunphotometer locations with mean RMSE of 1.6-3.3 g/cu. m relative to PM2.5 estimated by sunphotometers. The remaining 6 of 8 marginal sites are found in the coastal zone, for which associated large RMSE values 4.5-7.8 g/cu. m are most likely due to overestimated AOD because of water-contaminated pixels.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN22372 , Atmospheric Environment (ISSN 1352-2310); 101; 338-349
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48931 , Bulletin of the American Meteorological Society (ISSN 0003-0007) (e-ISSN 1520-0477); 98; 10; 2215-2228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...