ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 169 (1991), S. 39-50 
    ISSN: 1432-1351
    Keywords: Photoreception ; Retinally degenerate ; Mouse ; Circadian ; Rods ; Cones ; 11-cis retinaldehyde ; Immunocytochemistry ; HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary We have examined the effects of light on circadian locomotor rhythms in retinally degenerate mice (C57BL/6J mice homozygous for the rd allele: rd/rd). The sensitivity of circadian photoreception in these mice was determined by varying the irradiance of a 15 min light pulse (515 nm) given at circadian time 16 and meauring the magnitude of the phase shift of the locomotor rhythm. Experiments were performed on animals 80 days of age. Despite the loss of visual photoreceptors in the rd/rd retina, animals showed circadian responses to light that were indistinguishable from mice with normal retinas (rd/+ and +/+). While no photoreceptor outersegments were identified in the retina of rd/rd animals (80–100 days of age), we did identify a small number of perikarya that were immunoreactive for cone opsins, and even fewer cells that contained rod opsin. Using HPLC, we demonstrated the presence and photoisomerization of the rhodopsin chromophore 11-cis retinaldehyde. The rd/rd retinas contained about 2% of 11-cis retinaldehyde found in +/+ retinas. We have yet to determine whether the opsin immunoreactive perikarya or some other unidentified cell type mediate circadian light detection in the rd/rd retina.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Microwave remote sensing measurements at L-band (~1.2-1.6 GHz) of geophysical parameters such as soil moisture will need to be at higher spatial resolution than current systems (SMOS/ SMAP/ Aquarius) in order to meet the requirements of land surface, ocean, and numerical weather prediction models in the near future, which will operate at ~9-15 km global grids and 1-3 km regional grids in the next few years. In order to make progress toward these needed spatial resolutions, advancements in technology are necessary which would lead to improved effective (i.e. equivalent) antenna size. An architecture trade study was conducted to quantitatively define the value and limits of different microwave technology paths, and to select the most appropriate path to achieve the high spatial resolution required by science in the future without sacrificing performance, accuracy, and global coverage.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN58134 , International Geoscience and Remote Sensing Symposium (IGARSS 2018); Jul 22, 2018 - Jul 27, 2018; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...