ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (7)
  • Instrumentation and Photography  (4)
  • Meteorology and Climatology; Geophysics  (2)
  • Electronics and Electrical Engineering  (1)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: No abstract available
    Keywords: Meteorology and Climatology; Geophysics
    Type: M13-3063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: The Lagrange multiplier theory developed in Part I of this study is applied to complete a relative calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the Lagrange multiplier method performs well in computer simulations. For mill measurement errors of 1 V m(sup -1) and a 5 V m(sup -1) error in the mean fair-weather field function, the 3D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair-weather field was also tested using computer simulations. For mill measurement errors of 1 V m(sup -l), the method retrieves the 3D storm field to within an error of about 8% if the fair-weather field estimate is typically within 1 V m(sup -1) of the true fair-weather field. Using this type of side constraint and data from fair-weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. Absolute calibration was completed using the pitch down method developed in Part I, and conventional analyses. The resulting calibration matrices were then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably in many respects with results derived from earlier (iterative) techniques of calibration.
    Keywords: Electronics and Electrical Engineering
    Type: Journal of Atmospheric and Oceanic Technology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Instrumentation and Photography
    Type: MSFC-E-DAA-TN64875
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: M12-1754 , NOAA Satellite Science Week: Algorithm Working Group, Proving Ground, and Risk Reduction Annual Meeting; Apr 30, 2012 - May 04, 2012; Kansas City, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: The preliminary design of an optical/acoustical instrument is described for making highly accurate real-time determinations of the location of cloud-to-ground (CG) lightning. The instrument, named the Lightning Optical Camera And ThundEr (LOCATE) sensor, will also image the clear and cloud-obscured lightning channel produced from CGs and cloud flashes, and will record the transient optical waveforms produced from these discharges. The LOCATE sensor will consist of a full (360 degrees) field-of-view optical camera for obtaining CG channel image and azimuth, a sensitive thunder microphone for obtaining CG range, and a fast photodiode system for time-resolving the lightning optical waveform. The optical waveform data will be used to discriminate CGs from cloud flashes. Together, the optical azimuth and thunder range is used to locate CGs and it is anticipated that a network of LOCATE sensors would determine CG source location to well within 100 meters. All of this would be accomplished for a relatively inexpensive cost compared to present RF lightning location technologies, but of course the range detection is limited and will be quantified in the future. The LOCATE sensor technology would have practical applications for electric power utility companies, government (e.g. NASA Kennedy Space Center lightning safety and warning), golf resort lightning safety, telecommunications, and other industries.
    Keywords: Instrumentation and Photography
    Type: AGU Meeting; Dec 10, 2001 - Dec 14, 2001; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Geostationary Operational Environmental Satellite - 16 (GOES-16) Geostationary Lightning Mapper (GLM) is evaluated for many months during the Post Launch Product Test (PLPT) phase in order to ensure that optimal products are available for both the operational forecasting and broader scientific research communities. An essential aspect of the PLPT phase is to obtain a benchmark of the GLM lightning optical amplitude, so that any long-term degradation in the nadir-staring GLM camera system can be realized and quantitatively assessed. This work provides a preliminary benchmark over a 60-day period using Provisionally Validated data.
    Keywords: Instrumentation and Photography
    Type: MSFC-E-DAA-TN56036 , International Conference on Atmospheric Electricity (ICAE 2018); Jun 17, 2018 - Jun 22, 2018; Nara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was delivered to the ISS in the Dragon trunk and robotically installed in an Earth-viewing position on the outside of the ISS. Following successful activation and checkout, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. Placing LIS on the Space Station provides a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the previous mission. Furthermore, this mission continues the important science focus to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements, along with observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellites, the Geosynchronous Operational Environmental Satellite-16/17 (GOES-16/17), are being used to cross-validate both systems. An especially unique contribution from the ISS platform is the production of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such as the oceans. Finally, LIS provides simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that is exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs). Leveraging TRMM's well-established processing and data handling assures that LIS data can be quickly delivered to users.
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN55819 , International Conference on Atmospheric Electricity 2018; Jun 17, 2018 - Jun 22, 2018; Nara City, Nara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-27
    Description: The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error plots are provided for both the simulations and actual data analyses.
    Keywords: Earth Resources and Remote Sensing
    Type: M12-1713 , M12-1731
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-09-14
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN72858 , Geostationary Lightning Mapper (GLM) Science Meeting; Sep 11, 2019; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
    Keywords: Instrumentation and Photography
    Type: 2008 NOAA STAR GOES-R AWG Review; Jun 23, 2008 - Jun 26, 2008; Madison, Wi; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...