ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (9)
  • 2000-2004  (9)
  • 1
    Publication Date: 2013-08-29
    Description: Ocean Raman scattering significantly contributes to the filling-in of solar Fraunhofer lines measured by satellite backscatter ultraviolet (buy) instruments in the cloudless atmosphere over clear ocean waters. A model accounting for this effect in buy measurements is developed and compared with observations from the Global Ozone Monitoring Experiment (GONE). The model extends existing models for ocean Raman scattering to the UV spectral range. Ocean Raman scattering radiance is propagated through the atmosphere using a concept of the Lambert equivalent reflectively and an accurate radiative transfer model for Rayleigh scattering. The model and observations can be used to evaluate laboratory measurements of pure water absorption in the UV. The good agreement between model and observations suggests that buy instruments may be useful for estimating chlorophyll content.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: We present a method for retrieval of the imaginary part of refractive index of desert dust aerosol in the near UV part of spectrum. The method uses Total Ozone Mapping Spectrometer (TOMS) measurements of the top of the atmosphere radiances at 331 and 360 run and aerosol optical depth provided by the Aerosol Robotic Network (AERONET). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Validation of SCIAMACHY data products are is key element for the detecting a stratospheric ozone recovery, which is a high priority for environmental research and environmental policy. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be an effective means for correcting long term drifts of backscatter type satellite measurements such as SCIAMACHY and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. In addition to comparing radiances, validation of SCIAMACHY ozone products will conducted by comparing total and profile ozone with TOMS and SBUV/2.
    Keywords: Earth Resources and Remote Sensing
    Type: 2nd Workshop on Atmospheric Chemistry Validation; May 03, 2004 - May 07, 2004; Frascati; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.
    Keywords: Earth Resources and Remote Sensing
    Type: International Quadrennial Ozone Symposium (QOS 2004); Jun 01, 2004 - Jun 08, 2004; Kos; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The TOMS instrument was launched on the Nimbus-7 satellite in Oct 1978 with the goal of understanding the meteorological influences on the ozone column. The nominal lifetime of the instrument was 1 year. However, in response to the concern over possible man-made influences on the ozone layer NASA continued to nurse the instrument for 13.5 years and launched a major program to produce accurate trend quality dataset of ozone. Despite severe optical degradation and other significant anomalies that developed in the instrument over its lifetime, the effort turned out to be a tremendous success. In 1984, TOMS took center stage as the primary provider of Antarctic ozone hole maps to the world community; it continues to play that role until today. An unexpected benefit of the close attention paid to improving the TOMS data quality was that several atmospheric constituents that interfere with ozone measurement were also identified and meticulously converted into long-term datasets of their own. These constituents include clouds, volcanic S02, aerosols, and ocean phytoplankton. In addition, the high quality of the basic datasets made it possible to produce global maps of surface UV and tropospheric ozone. In most cases there are no other sources of these data sets. Advanced UV instruments currently under development in the US and Europe will continue to exploit the TOMS-developed techniques for several decades.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall AGU 2003 Meeting; Dec 08, 2003 - Dec 12, 2003; San Fransico, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The TOMS (Total Ozone Mapping Spectrometer) reflectively time series 1980 to 1992 and 1997 to 2000 have been combined to estimate change that have occurred over a 21 year period. The relative calibration of the two TOMS (Nimbus-7, N7 and Earth-Probe, EP) has been validated using the measured reflectivity R over Hudson Bay, Canada and found to be within 1 RU (R=0.01). Some of the local trend features seen in the N7 time series (1980 to 1992) have been continued in the combined time series, but the overall zonal average and global trends have changed. The UV (ultraviolet) reflectivity data are compared with changes in the AVHRR outgoing long-wavelength radiation (OLR) and show an expected anti-correlation with cloud-cover changes over the same period for many, but not all, features. The key results include a continuing decrease in cloud cover over Europe and North America and an increase in reflectivity near Antarctica.
    Keywords: Earth Resources and Remote Sensing
    Type: Ultraviolet Workshop; Apr 08, 2002 - Apr 12, 2002; Saariselka; Finland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Analysis of the TOMS minimum reflectivity data for 380 nm channel (R380) show regions of high reflectivity values (approx. 7 to 8%) over Sargasso Sea in the Northern Atlantic, anti-cyclonic region in the Southern Atlantic, and a large part of the ocean in the Southern Pacific, and low values (5 approx. 6 %) over the rest of the open ocean. Through radiative transfer simulations we show that these features are highly correlated with the distribution of chlorophyll in the ocean. Theoretical minimum reflectivity values derived with the help of CZCS chlorophyll concentration data as input into a vector ocean-atmosphere radiative transfer code developed by Ahmad and Fraser show very good agreement with TOMS minimum reflectivity data for the winter season of year 1980. For the summer season of year 1980, good qualitative agreement is observed in the equatorial and northern hemisphere but not as good in the southern hemisphere. Also, for cloud-free conditions, we find a very strong correlation between R340 minus R380 values and the chlorophyll concentration in the ocean. Results on the possible effects of absorbing and non-absorbing aerosols on the TOMS minimum reflectivity will also be presented. The results also imply that ocean color will affect the aerosol retrieval over oceans unless corrected.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall AGU 2003; Dec 08, 2003 - Dec 12, 2003; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.
    Keywords: Earth Resources and Remote Sensing
    Type: 2002 Spring AGU; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: Satellite instruments currently provide global maps of surface UV (ultraviolet) irradiance by combining backscattered radiance data with radiative transfer models. The models are often limited by uncertainties in physical input parameters of the atmosphere and surface. Global mapping of the underwater UV irradiance creates further challenges for the models. The uncertainties in physical input parameters become more serious because of the presence of absorbing and scattering quantities caused by biological processes within the oceans. In this paper we summarize the problems encountered in the assessment of the underwater UV irradiance from space-based measurements, and propose approaches to resolve the problems. We have developed a radiative transfer scheme for computation of the UV irradiance in the atmosphere-ocean system. The scheme makes use of input parameters derived from satellite instruments such as TOMS (Total Ozone Mapping Spectrometer) and SeaWiFS (Sea-viewing Wide Field-of-view Sensor). The major problem in assessment of the surface UV irradiance is to accurately quantify the effects of clouds. Unlike the standard TOMS UV algorithm, we use the cloud fraction products available from SeaWiFS and MODIS (Moderate Resolution Imaging Spectrometer) to calculate instantaneous surface flux at the ocean surface. Daily UV doses can be calculated by assuming a model of constant cloudiness throughout the day. Both SeaWiFS and MODIS provide some estimates of seawater optical properties in the visible. To calculate the underwater UV flux the seawater optical properties must be extrapolated down to shorter wavelengths. Currently, the problem of accurate extrapolation of visible data down to the UV spectral range is not solved completely, and there are few available measurements. The major difficulty is insufficient correlation between photosynthetic and photoprotective pigments of phytoplankton absorbing in the visible and UV respectively. We propose to empirically parameterize seawater absorption in the UV on a basis of available data sets of bio-optical measurements from a variety of ocean waters. Another problem is the lack of reliable data on pure seawater absorption in the UV. Laboratory measurements of the UV absorption of both pure water and pure seawater are required.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...