ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: A key on-orbit calibration step for satellite remote sensing of ocean color is the vicarious calibration. This establishes the final gains for each spectral band on the sensor that minimize bias in the retrieved ocean color signal. The vicarious calibration is specific to the instrument and the atmospheric correction algorithm. The vicarious calibration gains for the Geostationary Ocean Color Imager (GOCI) are presented here, which were derived to optimize the performance ofNASA's standard atmospheric correction algorithm as implemented in the l2gen code and distributed through the SeaDAS open-source software package. Following NASA's protocols, the near-infrared(NIR) bands were calibrated first, and the visible bands were then calibrated relative to this fixed NIR calibration. The gain for the 745-nm NIR band was derived using a fixed aerosol model, which waschosen based on the Angstrom Coefficients derived from MODIS onAqua (MODISA). For the vicarious gains of the visible bands, twosources for the target water-leaving radiances were tested: matchupsfrom MODISA and climatological data from SeaWiFS. A validation analysis using AERONET-OC data shows an improvement in sensor performance when compared with results using the current vicarious gains and results using no vicarious calibration. Good agreement was found in vicarious gains derived using both concurrent MODISA and climatological SeaWiFS as vicarious calibration data sources. These results support the use of a concurrent sensor for the vicarious calibration when in situ data are not available and demonstrate that using climatology from a well-calibrated sensor like SeaWiFSfor the vicarious calibration is a valid alternative when it is not possible to use a concurrent sensor or in situ data. We recommend using the gains derived from concurrent GOCI matchups with MODISA for GOCI processing in SeaDAS/l2gen.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN65760 , International Journal of Remote Sensing (ISSN 0143-1161) (e-ISSN 1366-5901)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
    Keywords: Earth Resources and Remote Sensing; Oceanography
    Type: GSFC-E-DAA-TN8941 , Remote Sensing of Environment; 135; 77-91
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...