ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: The interest for Martian water ice clouds has recently taken a new extent given their likely involvement both in climate and in the hydrological cycle. Previous related microphysical studies have already discussed the complex interactions between airborne dust and clouds [2]. Whereas water ice mantles upon dust cores enhance sedimentation rates and thus possibly change the vertical distribution of dust and water, the advection of clouds by winds could also modulate the geographical distribution of volatiles. Within this context, only 3D modeling based on the use of Martian General Circulation Models (MGCM) is able to give us a consistent clue of the global climatic aspects of Martian clouds.
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.
    Keywords: Meteorology and Climatology
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Climate Change; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (10(exp 5) - 10(exp 6) Myr ago). Examples include gullies, cold-based tropical glaciers, paleolakes, and youthful near-surface ice. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.
    Keywords: Meteorology and Climatology
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Climate Change; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.
    Keywords: Meteorology and Climatology
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratorys (MSL) Curiosity rover has been operating in Gale Crater Mars (4.5S, 137.4E) for over 2 Mars years. Analysis of its pressure data, which have a precision of approximately 0.2 Pa (see Haberle et al., 2014; Harri et al., 2014), reveal temporal oscillations in its seasonally de-trended daily averaged pressures at some seasons with 2-5 Pa amplitudes that have periods similar to those observed at the Viking Lander 2 (VL-2) site (48.3N, 134.0E) several decades ago. As illustrated in Fig 1 there are clear peaks in the variance at a frequency f approximately 0.45 and 0.06 per sol for the fall season of Mars Year (MY) 31, and at f approximately 0.15 and 0.06 per sol for MY 32. These frequencies correspond to periods of 2.2, 6.7, and 16.7 sols, and are very similar to those observed at VL-2 (Fig 2, and see Barnes, 1980). Since orbital imaging data show dust frontal systems associated with eastward traveling baroclinic eddies that occasionally cross the equator (Wang et al., 2003), these findings suggest that MSL may be seeing their signature in its pressure data. To make this case we show that (a) the spectral peaks in the MSL are not only similar to those at VL-2, they have the same seasonal variation, (b) at least for some seasons the peaks are statistically significant and not likely due to random noise in the data, and (c) Global Circulation Model (GCM) results from the Ames GCM support this interpretation.
    Keywords: Earth Resources and Remote Sensing; Geophysics
    Type: ARC-E-DAA-TN37024 , International Workshop on the Mars Atmosphere: Modelling and Observations; Jan 17, 2017 - Jan 20, 2017; Granada; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...