ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-17
    Description: The flash photolysis-resonance fluorescence system described by Davis et al. (1974) is used to measure the rate constants for the reactions of chlorine nitrate (ClONO2) with stratospheric O(3-P) and OH. Both reactions are examined in a pyrex cell with an internal volume of about 150 cu cm, where the reaction mixture was maintained at 245 K by circulating methanol from a thermostated circulation bath through the outer jacket of the reaction cell. The relative chemical degradation rates as a function of altitude for both reactions are tabulated, which shows that the chemical degradation pathways contribute less than 10% to the total rate of ClONO2 destruction at altitudes less than 30 km. Since the concentration of ClONO2 is calculated to be near its maximum around 25 km and drops off very significantly at higher altitudes, it is concluded that the photochemical decomposition of ClONO2 in the stratosphere is by far the most important degradation path for this molecule.
    Keywords: ENVIRONMENT POLLUTION
    Type: Geophysical Research Letters; 4; Jan. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-17
    Description: Direct measurements of the OH radical in the vicinity of an isolated power plant plume are reported. These measurements were used to estimate the conversion time of SO2 to H2SO4-sulfate aerosol via the initiating step OH + SO2 + M yields HSO3. Using the near-high-noon measured value of OH (9.5 million per cu cm), resulted in a 1/e conversion time of 1.4 days. The latter lifetime would correspond to a conversion rate of about 2%/hr. When the lifetime calculation was modified to take into consideration the OH diurnal cycle, the 1/e conversion time for SO2 was found to be 4.4 days, giving an apparent overall rate of conversion of about 0.7%/hr. Similar calculations carried out for the conversion of NO2 to NHO3 resulted in 1/e lifetimes for NO2 of 2-3 h for midday time periods.
    Keywords: ENVIRONMENT POLLUTION
    Type: Atmospheric Environment; 13; 8, 19; 1979
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Chemical Instrumentation Test and Evaluation 3 (CITE 3) NO-NO2 database has provided a unique opportunity to examine important aspects of tropospheric photochemistry as related to the rapid cycling between NO and NO2. Our results suggest that when quantitative testing of this photochemical system is based on airborne field data, extra precautions may need to be taken in the analysis. This was particularly true in the CITE 3 data analysis where different regional environments produced quite different results when evaluating the photochemical test ratio (NO2)(sub expt)/(NO2)(sub calc), designated here as R(sub E)/R(sub C). The quantity (NO2)(sub Calc) was evaluated using the following photostationary state expression: (NO2)(sub Calc) = k(sub 1)(O3) + k(sub 4)(HO2) + k(sub 5)(CH3O2) + k(sub 6)(RO2))(NO)(sub Expt)/J(sub 2). The four most prominent regional environmental data sets identified in this analysis were those labeled here as free-tropospheric northern hemisphere (FTNH), free-tropospheric tropical northern hemisphere (FTTNH), free-tropospheric southern hemisphere (FTSH), and tropical-marine boundary layer (plume) (TMBL(P)). The respective R(sub E)/R(sub C) mean and median values for these four data subsets were 1.74, 1.69; 3.00, 2.79; 1.01, 0.97; and 0.99, 0.94. Of the four data subsets listed, the two that were statistically the most robust were FTNH and FTSH; for these the respective R(sub E)/R(sub C) mean and standard deviation of the mean values were 1.74 +/- 0.07 and 1.01 +/- 0.04. The FTSH observations were in good agreement with theory, whereas those from the FTNH data set were in significant disagreement. An examination of the critical photochemical parameters O3, UV(zenith), NO, NO2, and non-methane hydrocarbons (NMHCs) for these two databases indicated that the most likely source of the R(sub E)/R(sub C) bias in the FTNH results was the presence of a systematic error in the observational data rather than a shortening in our understanding of fundamental photochemical processes. Although neither a chemical nor meteorological analyses of these data identified this error with complete certainty, they did point to the three most likely possibilities: (1) an NO2 interference from a yet unidentified NO(y) species: (2) the presence of unmeasured hydrocarbons, the integrated reactivity of which would be equivalent to approximately 2.7 parts per billion by volume (ppbv) of toluene; or (3) some combination of points (1) and (2). Details concerning hypotheses (1) and (2) as well as possible ways to minimize these problems in future airborne missions are discussed.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,501-23,523
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...