ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.
    Keywords: ENVIRONMENT POLLUTION
    Type: Proc. of the Seminar on Space Station Human Productivity; 15 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: Methane is of interest in the study of the Earth's atmosphere because of its implication in the future global warming of the surface. This warming is produced by the absorption of infrared energy by trace gases. It has been estimated that in the next 40 to 50 years, methane could contribute 20 to 25 pct. as much atmospheric warming as that expected from carbon dioxide increases. Studies to examine sources, sinks, and cycles of methane will require analytical methods capable of continuous unattended measurement with temporal resolution of an hour or less for weeks at a time. Gas chromatography (GC) is one of the most practical methods available to conduct the analysis of air, but limitations in this technique still exist which can be alleviated with multiplex GC (MGC). MGC is a technique where many samples are pseudo-randomly introduced to the chromatograph without regard to the length of time required for an analysis. The resulting data must then be reduced using computational methods such as cross correlation. In the technique reported, a tube packed with silver oxide was used at the inlet of the GC column to create concentration pulses of methane in a sample stream of air. By using only one carrier, i.e., ambient air, an effective and accurate method to monitor the variations in concentration of methane in the atmosphere over long periods of time was developed. Methane in ambient air was monitored for an eight day period and an interesting temporal variability was found. This work has shown the utility of a relatively simple MGC for the analysis of a real environmental sample.
    Keywords: ENVIRONMENT POLLUTION
    Type: First Symposium on Biospheric Research; p 3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-25
    Description: Trace gas analysis is an integral part of biospheric studies. Analytical instruments, primarily gas chromatographs (GC), are capable of measuring gases and volatiles to the ppb-level in real time. Trace gases significant in the study of biocycles include nitrous oxide, hydrogen sulfide, other nitrogen and sulfur species, as well as methane and ethylene. The concept of a field gas chromatograph is derived from technology being pursued in the design of ultra-compact instruments for solar system exploration. The instrument breadboard incorporates the specialized porous column packings and the highly sensitive metastable ionization detector developed by the Solar System Exploration Office. These parts ensure a broad capability for which the analysis of ambient N2O is one example. A commercial, portable gas chromatograph is currently being extensively modified to incorporate analytical concepts and components derived from flight GC technology. Data storage devices suitable for field use are presently being studied.
    Keywords: ENVIRONMENT POLLUTION
    Type: First Symposium on Biospheric Research; p 3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...