ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ENVIRONMENT POLLUTION  (1)
  • Earth Resources and Remote Sensing  (1)
  • 1
    Publication Date: 2013-08-31
    Description: The occurrence of Polar Stratospheric Clouds (PSCs), initially inferred from satellite measurements of solar extinction, have now also been noted by the recent scientific expeditions in the Antarctic. The presence of such clouds in the Antarctic has been postulated to play a significant role in the depletion of ozone during the transition from winter to spring. The mechanisms suggested involve both dynamical and chemical processes which, explicity or implicitly, are associated with the ice particles constituting the PSCs. It is, thus, both timely and necessary to investigate the evolution of these clouds and ascertain the nature and magnitude of their influences on the state of the Antarctic stratosphere. To achieve these objectives, a detailed microphysical model of the processes governing the growth and sublimation of ice particles in the polar stratosphere was developed, based on the investigations of Ramaswamy and Detwiler. The present studies focus on the physical processes that occur at temperatures below those required for the onset of ice deposition from the vapor phase. Once these low temperatures are attained, the deposition of water vapor onto nucleation particles becomes extremely significant. First, the factors governing the magnitude of growth and the growth rate of ice particles at various altitudes are examined. Second, the ice phase mechanisms are examined in the context of a column model with altitudes ranging from 100 to 5 mb pressure levels. The column microphysical model was used to perform simulations of the cloud evolution, using the observed daily temperatures. The effect due to the growth of the particles on the radiation fields are also investigated using a one dimensional radiative transfer model. Specifically, the perturbations in the longwave cooling and that in the shortwave heating for the late winter/early spring time period are analyzed.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 83-84
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...