ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-02-14
    Description: This effects of reconditioning on the performance of NiCd batteries are reviewed. These effects are correlated with cell experiments and individual electrode investigations. The effects of reconditioning on the positive electrode performance are found to be significant. A mechanism is proposed that rationalizes the operation of the nickel electrode and suggests that reconditioning minimizes depth of discharge stress during use and maintains uniformity of the active material.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Goddard Space Flight Center The 1982 Goddard Space Flight Center Battery Workshop; p 324-345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-14
    Description: The results of an extensive system analysis of the megachannel spectrum analyzer currently being developed for use in various applications of the Deep Space Network are presented. The intent of this analysis is to quantify the effects of digital quantization errors on system performance. The results of this analysis provide useful guidelines for choosing various system design parameters to enhance system performance.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: The Telecommunications and Data Acquisition Report (date]; p 244 - 254
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-01-16
    Description: The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Marshall Space Flight Center Solar-Terrest. Predictions Proc., Vol. 2; p 182-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: In: Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991 (A93-18923 05-74); p. 412-420.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The long-term performance of rechargeable battery cells has traditionally been verified through life-testing, a procedure that generally requires significant commitments of funding and test resources. In the situation of nickel hydrogen battery cells, which have the capability of providing extremely long cycle life, the time and cost required to conduct even accelerated testing has become a serious impediment to transitioning technology improvements into spacecraft applications. The utilization of computer simulations to indicate the changes in performance to be expected in response to design or operating changes in nickel hydrogen cells is therefore a particularly attractive tool in advanced battery development, as well as for verifying performance in different applications. Computer-based simulations of the long-term performance of rechargeable battery cells have typically had very limited success in the past. There are a number of reasons for the lack in progress in this area. First, and probably most important, all battery cells are relatively complex electrochemical systems, in which performance is dictated by a large number of interacting physical and chemical processes. While the complexity alone is a significant part of the problem, in many instances the fundamental chemical and physical processes underlying long-term degradation and its effects on performance have not even been understood. Second, while specific chemical and physical changes within cell components have been associated with degradation, there has been no generalized simulation architecture that enables the chemical and physical structure (and changes therein) to be translated into cell performance. For the nickel hydrogen battery cell, our knowledge of the underlying reactions that control the performance of this cell has progressed to where it clearly is possible to model them. The recent development of a relative generalized cell modelling approach provides the framework for translating the chemical and physical structure of the components inside a cell into its performance characteristics over its entire cycle life. This report describes our approach to this task in terms of defining those processes deemed critical in controlling performance over life, and the model architecture required to translate the fundamental cell processes into performance profiles.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Marshall Space Flight Center, The 1994 27th Annual NASA Aerospace Battery Workshop; p 177-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA Goddard Space Flight Center, Greenbelt, Md. The 1986 Goddard Space Flight Center Battery Workshop; p 311-333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: During the individual cell short-down procedures often used for storing or reconditioning nickel-cadmium (Ni-Cd) batteries, it is possible for significant reversal of the lowest capacity cells to occur. The reversal is caused by the finite resistance of the common current-carrying leads in the resistive network that is generally used during short-down. A model is developed to evaluate the extent of such a reversal in any specific battery, and the model is verified by means of data from the short-down of a f-cell, 3.5-Ah battery. Computer simulations of short-down on a variety of battery configurations indicate the desirability of controlling capacity imbalances arising from cell configuration and battery management, limiting variability in the short-down resistors, minimizing lead resistances, and optimizing lead configurations.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Goddard Space Flight Center The 1984 Goddard Space Flight Center Battery Workshop; p 323-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-25
    Description: In the early 1980's the NASA Lewis group addressed the topic of designing nickel hydrogen cells for LEO applications. As published in 1984, the design addressed the topics of gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. This design effort followed principles set forth in an earlier Lewis paper that addressed the topic of pore size engineering. At about that same time, the beneficial effect on cycle life of lower electrolyte concentrations was verified by Hughes Aircraft as part of a Lewis funded study. A succession of life cycle tests of these concepts have been carried out that essentially verified all of this earlier work. During these past two decades, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research efforts carried out at several laboratories. At The Aerospace Corporation, Dr. Zimmerman has been developing a sophisticated model of an operating nickel hydrogen cell which will be used to model certain mechanisms that have contributed to premature failures in nickel hydrogen and nickel cadmium cells. During the course of trying to understand and model abnormal nickel hydrogen cell behaviors, we have noted that not enough attention has been paid to the potassium ion content in these cells, and more recently batteries. Several of these phenomenon have been well known in the area of alkaline fuel cells, but only recently have they been examined as they might impact alkaline cell designs. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium devices, Once these phenomenon are understood conceptually, the impact of potassium content on a potential cell design can be evaluated with the aid of an accurate model of an operating cell or battery. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design: (1) The gamma phase uptake of potassium ion can result in a lowering of the electrolyte concentration. This leads to a higher electrolyte resistance as well as electrolyte diffusional limitations on the discharge rate. This phenomenon will also impact the response of the cell to a reconditioning cycle. (2) The impact of low level shunt currents in multi-cell con figurations will result in the movement of potassium ion from one part of the battery to another. This will impact the electrolyte volume/vapor pressure relationships within the cell or battery. (3) The transport of water vapor from place to place under the driving force of a tempetature gradient has already impacted cells for the case where water vapor is condensed on a colder cell wall. The paper will explore the convective and diffusive movement of gases saturated with water vapor from a warmer plate pack to a cooler one - both with and without liquid communication.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The destructive physical analysis (DPA) of electrochemical devices is an important part of the overall test. Specific tests were developed to investigate the degradation mode or the failure mechanism that surfaces during the course of a cell being assembled, acceptance tested, and life-cycle tested. The tests that have been developed are peculiar to the cell chemistry under investigation. Tests are often developed by an individual or group of researchers as a result of their particular interest in an unresolved failure mechanism or degradation mode. A series of production, operational, and storage issues that were addressed by the Electrochemistry Group at The Aerospace Corporation are addressed. As a result of these investigations, as well as associated research studies carried out to develop a clearer understanding of the nickel oxyhydroxide electrode, a series of unique and useful specialized tests were developed. Some of these special tests were assembled to describe the methods that were found to be particularly useful in resolving a wide spectrum of manufacturing, operational, and storage issues related to nickel-hydrogen cells. The general methodology of these tests is given here with references listed to provide the reader with a more detailed understanding of the tests. The tests are classified according to the sequencing, starting with the impregnation of the nickel plaque material and culminating with the storage of completed cells. The details of the wet chemical procedures that were found to be useful because of their accuracy and reproducibility are given. The equations used to make the appropriate calculations are listed.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-CR-192318 , NAS 1.26:192318 , ATR-93(3821)-1 , AD-A261681
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: The Telecommunications and Data Acquisition; p 340-351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...