ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELECTRONICS  (1)
  • SPACECRAFT PROPULSION AND POWER  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 90-3821
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A method is presented for designing optimal feedback controllers for systems having subsystem sensitivity constraints. Such constraints reflect the presence of subsystem performance indices which are in conflict with the performance index of the overall system. The key to the approach is the use of relative performance index sensitivity (a measure of the deviation of a performance index from its optimum value). The weighted sum of subsystem and/or operational mode relative performance index sensitivies is defined as an overall performance index. A method is developed to handle linear systems with quadratic performance indices and either full or partial state feedback. The usefulness of this method is demonstrated by applying it to the design of a stability augmentation system (SAS) for a VTOL aircraft. A desirable VTOL SAS design is one that produces good VTOL transient response both with and without active pilot control. The system designed using this method is shown to effect a satisfactory compromise solution to this problem.
    Keywords: ELECTRONICS
    Type: NASA-TM-X-68041 , E-6879 , Ann. NASA - Univ. Conf. on Manual Control; May 17, 1972 - May 19, 1972; Ann Arbor, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...