ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-11-09
    Description: Abstract
    Description: We present SCOTER, an open-source Python programming package that is designed to relocate multiple seismic events by using direct P- and S-wave station correction terms. The package implements static and shrinking-box source-specific station terms techniques extended to regional and teleseimic distances and adopted for probabilistic, non-linear, global-search location for large-scale multiple-event location. This program provides robust relocation results for seismic event sequences over a wide range of spatial and temporal scales by applying empirical corrections for the biasing effects of 3-D velocity structure. Written in the Python programming language, SCOTER is run as a stand-alone command-line tool (requiring no knowledge of Python) and also provides a set of sub-commands to develop required input files (e.g. phase files, travel-time grid files, configuration) and export relocation results (such as hypocenter parameters, travel-time residuals) in different formats -- routine but non-trivial tasks that can consume much user time. This package can be used for relocating data sets in local, regional, and teleseimic scales.
    Keywords: relocation of seismic events ; python ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Software
    Format: 4 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-03
    Description: Abstract
    Description: This dataset contains a high resolution Moho map of the in the Eastern Alps focused on the SWATH-D network. The Moho map was produced by manually picking the Moho on narrow transects (CCP stacks) calculated with the receiver function method. These manual picks were then fit with a spline in 3-D. Three separate and sometimes overlapping maps are included corresponding to the European, Adriatic, and Pannonian Mohos. In addition to Moho depth, Ps travel time and crustal average Vp/Vs are also reported.
    Description: TechnicalInfo
    Description: The dataset is stored as .csv file. The columns X,Y,Z gives the Moho coordinates in the Earth-centered, Earth-fixed coordinate system. lat,lon,depth give the geodetic coordinates (depth is in kilometres). tPs=Time lag of the Ps phase, k=Vp/Vs ratio. interp indicates if the datapoint was interpolated at the edge of the Moho surface (so potentially has lower certainty) and is set to 1 if true. tag indicates which Moho the point belong to (Mohos do overlap) with EU=European Moho, AD= Adriatic Moho, and PA=Pannonian Moho.
    Keywords: Moho ; Moho map ; Eastern Alps ; Europe ; Adria ; Pannonian Basin ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-28
    Description: Abstract
    Description: This archive disseminated through the GFZ-Data Service includes both results and information as-sociated to Bindi et al. (2023). In particular, the archive includes a seismic catalogue reporting ener-gy magnitude Me estimated form vertical P-waves recorded at teleseismic distances in the range 20°≤ D ≤ 98°, following Di Giacomo et al (2008, 2010). The catalogue is built considering 6349 earth-quakes included in the GEOFON (Quinteros et al, 2021) catalogue with moment magnitude Mw larger than 5 and occurring after 2011. Tools used to compute the energy magnitude are free available. In particular, we used stream2segment (Zaccarelli, 2018) to download data from IRIS (https://ds.iris.edu/ds) and EIDA (Strollo et al., 2021) repositories, and me-compute [Zaccarelli, 2023) to process waveforms and compute Me. The methodology applied to me-compute is also implemented as add-on for SeicomP (GFZ and Gempa, 2020) in order to allow the real time computation of Me (https://github.com/SeisComP/scmert).
    Description: Other
    Description: Version History: 19 February 2024: release of first version 28 March 2024: release of v.1.1 Addition of the complete list of references for the seismic networks analysed with me-compute as described in Bindi et al. (2024, ESSD). The list is provided as additional txt file in the data download section and all references were added to the XML metadata.
    Keywords: Energy magnitude ; seismic catalog ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...