ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The southern oscillation/El Nino (ENSO) is the single most prominent interannual signal in global atmospheric/oceanic fluctuations. The following question is addressed: how important is the angular momentum carried by ENSO in exciting the Earth's Chandler wobble? The question is attacked through a statistical analysis of the coherence spectra (correlation as a function of frequency) between two data sets spanning 1900 to 1979-the southern oscillation index (SOI) time series and the excitation function psi (with x-component psi sub x and y-component psi sub y) of the Chandler wobble derived from the homogeneous ILS (International Latitude Service) polar motion data. The coherence power and phase in the Chandler frequency band (approx. 0.79 to 0.89 cpy) are studied. It is found that, during 1900 to 1979 the coherence between SOI and psi sub x is significant well over the 95% confidence threshold whereas that between SOI and psi sub y is practically nil. Quantitatively, the coherence study shows that ENSO provides some 20% of the observed Chandler wobble excitation power. Since earlier investigations have shown that the total atmospheric/oceanic variation can account for the Chandler wobble excitation at about 20% level, the implication is that ENSO maybe an important (interannual) part of the atmospheric/oceanic variation that is responsible for the Chandler wobble excitation during 1900 to 1979.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-86231 , REPT-85B0557 , NAS 1.15:86231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A comprehensive, experimental study of the predictability of the polar motion using a homogeneous BIH (Bureau International de l'Heure) data set is presented. Based on knowledge of the physics of the annual and the Chandler wobbles, the numerical model for the polar motion is constructed by allowing the wobble periods to vary. Using an optimum base length of 6 years for prediction, this floating-period model, equipped with a non-linear least-squares estimator, is found to yield polar motion predictions accurate from 0.012 to 0.024 inches depending on the prediction length up to one year, corresponding to a predictability of 91-83%. This represents a considerable improvement over the conventional fixed-period predictor, which does not respond to variations in the apparent wobble periods. The superiority of the floating-period predictor to other predictors based on critically different numerical models is also demonstrated.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-86095 , NAS 1.15:86095
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...