ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (24)
  • Astronomy  (15)
  • SPACE SCIENCES  (5)
  • EARTH RESOURCES AND REMOTE SENSING  (4)
  • E31
  • J24
  • 1
    Publication Date: 2018-06-08
    Description: We report on the discovery and follow-up timing observations of a 63-ms radio pulsar, PSR J1105-6107. We show that the pulsar is young, having a characteristic age of only 63kyr. We consider its possible association with the nearby remnant G290.1-0.8 (MSH 11-61A) but uncertainties in the distances and ages preclude a firm conclusion.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN10762 , NCTS# 16972-14; Annual Meeting, Division for Planetary Science; Oct 06, 2013 - Oct 11, 2013; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: LWA Current and Future Users Meeting; May 12, 2011 - May 13, 2011; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: National Radio Science Meeting (USNC-URSI); Jan 05, 2011 - Jan 09, 2011; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A rapid and accurate method of calculating optimal impulsive transfers in the restricted problem of three bodies has been developed. The technique combines a multi-conic method of trajectory integration with primer vector theory and an accelerated gradient method of trajectory optimization. A unique feature is that the state transition matrix and the primer vector are found analytical without additional integrations or differentiations. The method has been applied to the determination of optimal two and three impulse transfers between the L2 libration point and circular orbits about both the earth and the moon.
    Keywords: SPACE SCIENCES
    Type: AIAA PAPER 73-145 , Aerospace Sciences Meeting; Jan 10, 1973 - Jan 12, 1973; Washington, DC
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: Disk disperse in a few million years, before which they must form planets. Photoevaporation and viscosity are mainly responsible for disk dispersal. EUV, FUV and X-rays have all been suggested as photoevaporation agents, disk evolutionary scenarios and predicted mass loss rates in each case differ. Stellar mass and radiation field, disk properties, magnitude of viscosity, and dust evolution all play significant roles in determining the evolution of the disk and its lifetime. Observational diagnostics of photoevaperative flows include [Nell] and perhaps [OI]. These are at present inconclusive and better diagnostics are needed.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN17213 , The Disk in Relation to The Formation of Planets And Their Protoatmospheres; Aug 25, 2014 - Aug 29, 2014; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Remotely sensed infrared radiance emitted by a surface is a function both of its kinetic temperature and its spectral emissivity. Consequently, assumptions are usually made about the emissivity of earth surface materials to allow their temperatures to be determined, or vice versa. To increase the accuracy of these assumptions, the directional hemispherical spectral reflectance of a wide range of natural earth surface materials has been measured and is summarized here. These include igneous, metamorphic, and sedimentary rocks, desert varnish, soils, vegetation, water, and ice. Kirchhoff's Law can be used to predict directional spectral emissivity from these data.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 42; 2; p. 83-106.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: By the end of this century the Earth Observing System (EOS) will provide worldwide, thermal infrared, multispectral images of the Earth, presenting geologists with a new kind of remote sensing data for interpretation. Thus it has become essential to understand the spectral emittance behavior of terrestrial surface materials. Perhaps the most fundamental question to be answereed is the extent to which such materials follow Kirchhoff's law (epsilon = 1 -R) under laboratory and field conditions, especially when a sample displays a thermal gradient. We present the first rigorous quantitative comparison of directional and hemispherical reflectance and directional emittance of rock and soil samples in the laboratory, with thermal gradients induced by heating them from below and allowing them to radiate to a colder background. The results show that only an extemeley low density sample composed of fine particles sifted into a 'fairy castle' structure displays a thermal gradient steep enough within the infrared skin depth to cause significant (6%) departure from Kirchhoff's law. There is no detectable effect on the more normal terrestrial samples, such as soils and rocks measured in the laboratory, even when semitransparent coatings are involved. Thus both emittance and reflectance measurements can be used to calculate sample emissivity for most terrestrial surface materieals. However, the effect on Kirchhoffian behavior of different field environments, which may induce a steeper thermal gradient in particulate samples, has yet to be determined, and some low-density surface materials like newly fallen snow, frost, and efflorescent salts on playas have yet to be measured in emittance.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 11,897-11,911
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B12; p. 24,235-24,240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
    Keywords: Astronomy
    Type: National Radio Science Meeting; Jan 05, 2011; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...