ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • EARTH RESOURCES AND REMOTE SENSING  (34)
  • Earth Resources and Remote Sensing  (33)
  • 1
    Publikationsdatum: 2011-08-19
    Beschreibung: The Moderate Resolution Imaging Spectrometer (MODIS), a key part of the Earth Observing System planned for the 1990's, is described. The complementary MODIS-T (64 channels) and MODIS-N (40 channels) instruments provide a multispectral observing capability that has application to land, ocean, and atmospheric research. The modules have a 500-1000 meter spatial resolution to accompany a swath width sufficient to provide two-day repeat coverage from a polar-orbiting, sun-synchronous, space-station serviceable platform. High signal-to-noise capability (500/1 or better) and 10-12 bit quantization over the dynamic ranges of the various spectral bands will be provided by the two modules.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2011-08-19
    Beschreibung: In the present assessment of the contributions of optical earth resources remote sensing in the 0.4-15.0 micron region, attention is given to underlying principles, applications to scientific disciplines such as geology, hydrology and oceanography, the recent development history of the requisite sensors, and sensor development trends. Development status characterizations are given for thematic mapping, modular optoelectronic multispectral scanning, the telescope/CCD 'SPOT' program of France, the thermal IR multispectral scanner for mineral signature identification, airborne imaging spectrometry, and the Advanced Visible and IR Imaging Spectrometer that is nearing deployment. Technology development trends and the capabilities they portend are projected.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Materialart: IEEE, Proceedings (ISSN 0018-9219); 73; 950-969
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-08-18
    Beschreibung: A series of experiments to study the optical and biological properties of terrestrial land cover are planned for late 1987 using a six-channel imaging spectroradiometer based on newly developed multispectral linear array (MLA) detector technology. Data from selected portions of the Sahel and rain forests of Africa and South America will be used to delineate biomass classes and estimate spherical albedos. A spatial resolution of 15 meters in the four visible-near IR channels and 30 meters in two shortwave IR channels, including a 'new' channel centered at 1.24 micrometers when combined with a spectral width of 20 nm for all channels, will be used to investigate possible improvements in land cover classification. Technology demonstrations include a test of data compression on data quality, the first spaceborne utilization of short wave infrared Schottky barrier Pd2Si detector arrays, and the use of close-butted, multi-array modules with attached spectral filters.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-06-06
    Beschreibung: The use of remote sensing instruments on orbiting satellite platforms in the study of Earth Science and environmental monitoring was officially inaugurated with the April 1, 1960 launch of the Television Infrared Observation Satellite (TIROS) [1]. The first TIROS accommodated two television cameras and operated for only 78 days. However, the TIROS program, in providing in excess of 22,000 pictures of the Earth, achieved its primary goal of providing Earth images from a satellite platform to aid in identifying and monitoring meteorological processes. This marked the beginning of what is now over four decades of Earth observations from satellite platforms. reflected and emitted radiation from the Earth using instruments on satellite platforms. These measurements are input to climate models, and the model results are analyzed in an effort to detect short and long-term changes and trends in the Earth's climate and environment, to identify the cause of those changes, and to predict or influence future changes. Examples of short-term climate change events include the periodic appearance of the El Nino-Southern Oscillation (ENSO) in the tropical Pacific Ocean [2] and the spectacular eruption of Mount Pinatubo on the Philippine island of Luzon in 1991. Examples of long term climate change events, which are more subtle to detect, include the destruction of coral reefs, the disappearance of glaciers, and global warming. Climatic variability can be both large and small scale and can be caused by natural or anthropogenic processes. The periodic El Nino event is an example of a natural process which induces significant climatic variability over a wide range of the Earth. A classic example of a large scale anthropogenic influence on climate is the well-documented rapid increase of atmospheric carbon dioxide occurring since the beginning of the Industrial Revolution [3]. An example of the study of a small-scale anthropogenic influence in climate variability is the Atlanta Land-use Analysis Temperature and Air-quality (ATLANTA) project [4]. This project has found that the replacement of trees and vegetation with concrete and asphalt in Atlanta, Georgia, and its environs has created a microclimate capable of producing wind and thunderstorms. A key objective of climate research is to be able to distinguish the natural versus human roles in climate change and to clearly communicate those findings to those who shape and direct environmental policy.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: The Practice of Optical Radiometry
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-06-07
    Beschreibung: There are no author-identified significant results in this report.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Materialart: NASA. Goddard Space Flight Center Operational Appl. of Satellite Snowcover Observations; p 1-19
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-06-07
    Beschreibung: The fabrication of airborne instruments is contributing to the development of multispectral linear array technology at NASA's Goddard Space Flight Center. The linear array pushbroom radiometer (LAPR-I), was built to demonstrate capabilities for acquiring digital image data using linear arrays. The LAPR-I employed three arrays of 512 silicon photodiodes each to simultaneously acquire three channels of data for spectral bands within the visible and near-infrared portions of the spectrum. A second instrument, LAPR-II, uses four arrays each consisting of 512 silicon detectors. A filter wheel containing six spectral filters is used in conjunction with each array to allow filter changes in flight. This capability will facilitate studies into the utility of various bands within the visible and near infrared portions of the spectrum. The LAPR-II's aircraft mounting will allow off-nadir pointing (plus-or-minus 50 deg fore-and-aft and side-to-side) which will enable investigations of the radiometric and geometric effects of off-nadir viewing. A short wave infrared radiometer is also described.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Materialart: The Multispectral Imaging Science Working Group, Vol. 3; 17 p
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2016-06-07
    Beschreibung: A Goddard Space Flight Center program of science studies and technology development to provide the basis for future earth observation sensors employing multispectral linear array (MLA) technology is described. Establishment of MLA performance parameters and performance modeling make up the primary science activities. Critical technologies being developed include: short-wave infrared (SWIR) detector arrays, visible/and near infrared detector arrays, and passive cryogenic coolers. Supporting activities include: test and field instrument development, focal plane research and assessment laboratory, system simulation laboratory, calibration sources and techniques, optics, and thermal infrared arrays.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Materialart: The Multispectral Imaging Science Working Group, Vol. 3; 29 p
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2017-10-02
    Beschreibung: The technology of visible and infrared imaging sensors designed for the remote monitoring of the oceans is assessed. Emphasis is placed on multichannel scanning radiometers that are either operational or under development. Present design practices and parameter constraints are discussed. Airborne sensor systems examined include the Ocean Color Scanner (OCS) and the Ocean Temperature Scanner (OTS). The Coastal Zone Color Scanner (CZCS) and Advanced Very High Resolution Radiometer (AVHRR), are reviewed with emphasis on design specifications, expected completion, and anticipated performance. Finally, recent technology advances and their probable impact on sensor design are examined.
    Schlagwort(e): EARTH RESOURCES AND REMOTE SENSING
    Materialart: AGARD Appl. of Remote Sensing to Ocean Surveillance; 20 p
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2018-06-06
    Beschreibung: Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.
    Schlagwort(e): Earth Resources and Remote Sensing
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-06-06
    Beschreibung: Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS.
    Schlagwort(e): Earth Resources and Remote Sensing
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...