ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in he balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. Journal of Physical Oceanography, 48(12), (2018) 2887-2899., doi: 10.1175/JPO-D-18-0032.1.
    Description: Salinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.
    Description: TW was supported by the National Key R&D Program of China (Grant 2017YFA0604104), National Natural Science Foundation of China (Grant 41706002), Natural Science Foundation of Jiangsu Province (Grant BK20170864), and MEL Visiting Fellowship (MELRS1617). WRG was supported by NSF Grant OCE 1736539. Part of this work is finished during TW’s visit in MEL and WHOI. We would like to acknowledge John Warner for providing the codes of the Hudson estuary model, and Parker MacCready, the editor, and two reviewers for their insightful suggestions on improving the manuscript.
    Description: 2019-06-06
    Keywords: Estuaries ; Dynamics ; Mixing ; Density Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2296-2311, doi:10.1175/JPO2959.1.
    Description: The subtidal salt balance and the mechanisms driving the downgradient salt flux in the Hudson River estuary are investigated using measurements from a cross-channel mooring array of current meters, temperature and conductivity sensors, and cross-channel and along-estuary shipboard surveys obtained during the spring of 2002. Steady (subtidal) vertical shear dispersion, resulting from the estuarine exchange flow, was the dominant mechanism driving the downgradient salt flux, and varied by over an order of magnitude over the spring–neap cycle, with maximum values during neap tides and minimum values during spring tides. Corresponding longitudinal dispersion rates were as big as 2500 m2 s−1 during neap tides. The salinity intrusion was not in a steady balance during the study period. During spring tides, the oceanward advective salt flux resulting from the net outflow balanced the time rate of change of salt content landward of the study site, and salt was flushed out of the estuary. During neap tides, the landward steady shear dispersion salt flux exceeded the oceanward advective salt flux, and salt entered the estuary. Factor-of-4 variations in the salt content occurred at the spring–neap time scale and at the time scale of variations in the net outflow. On average, the salt flux resulting from tidal correlations between currents and salinity (tidal oscillatory salt flux) was an order of magnitude smaller than that resulting from steady shear dispersion. During neap tides, this flux was minimal (or slightly countergradient) and was due to correlations between tidal currents and vertical excursions of the halocline. During spring tides, the tidal oscillatory salt flux was driven primarily by oscillatory shear dispersion, with an associated longitudinal dispersion rate of about 130 m2 s−1.
    Description: This work was supported by National Science Foundation Grant OCE00-95972 and Hudson River Foundation Grant 005/03A. Author Lerczak received partial support from the Penzance Endowed Fund in Support of Assistant Scientists.
    Keywords: Ice shelves ; Dynamics ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): F02004, doi:10.1029/2003JF000096.
    Description: A 9 month time series of tripod-mounted optical and acoustic measurements of sediment concentration and bed elevation was used to examine depositional processes in relationship to hydrodynamic variables in the Hudson River estuary. A series of cores was also taken directly under and adjacent to the acoustic measurements to examine the relation between the depositional processes and the resulting fine-scale stratigraphy. The measurements reveal that deposition occurs as a result of sediment flux convergence behind a salinity front and that the accumulation rates are sufficient to deposit up to 25 cm of new high-porosity sediment in a single ebb-tidal phase. Subsequent dewatering and erosion reduces the thickness of the initial deposit to several centimeters. These depositional events were only observed on spring tides. Ten depositional events during two spring tidal cycles produced a seasonal deposit of 18 cm, consistent with estimates of seasonal deposition from cores. A proxy for near-bed suspended grain size variations was estimated from the combined acoustic and optical measurements, implying that the erosional processes resuspend only the finer-grained sediments, thus leaving behind silt and very fine grained sand beds. The thickness of the deposited homogenous clayey silt beds, and the vertical separation between beds interlaminated with silt and very fine sand, are roughly consistent with the acoustic measurements of changes in bed elevations during deposition and erosion. The variability in individual bed thickness is the result of variations of processes over an individual tidal cycle and is not a product of variations over the spring neap fortnightly timescale.
    Description: The authors would like to acknowledge the Hudson River Foundation, who provided funding for this work under grant 009/00A.
    Keywords: Sediment transport ; Estuarine processes ; Fluid mud
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 27 (2007): 375-399, doi:10.1016/j.csr.2005.07.008.
    Description: A mooring and tripod array was deployed from the fall of 2002 through the spring of 2003 on the Po prodelta to measure sediment transport processes associated with sediment delivered from the Po River. Observations on the prodelta revealed wave-supported gravity flows of high concentration mud suspensions that are dynamically and kinematically similar to those observed on the Eel shelf (Traykovski et al., 2000). Due to the dynamic similarity between the two sites, a simple one-dimensional across-shelf model with the appropriate bottom boundary condition was used to examine fluxes associated with this transport mechanism at both locations. To calculate the sediment concentrations associated with the wave-dominated and wave-current resuspension, a bottom boundary condition using a reference concentration was combined with an “active layer” formulation to limit the amount of sediment in suspension. Whereas the wave-supported gravity flow mechanism dominates the transport on the Eel shelf, on the Po prodelta flux due to this mechanism is equal in magnitude to transport due to wave resuspension and wind-forced mean currents in cross-shore direction. Southward transport due to wave resuspension and wind forced mean currents move an order of magnitude more sediment along-shore than the downslope flux associated wave-supported gravity flows.
    Description: This work funded by the U.S. Office of Naval Research under grant number #N00014-02-10378, under the direction of program manager, Tom Drake.
    Keywords: Po River ; Adriatic Sea ; Sediment transport ; Turbidity currents ; Fluid mud
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...