ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dunedin Volcano  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-12-22
    Description: Phonolite-trachyte associations are a common feature of alkaline volcanoes in intraplate settings, and their coexistence challenges closed-system magmatic differentiation scenarios. Here we have investigated the mineralogical and petrochemical features of dikes, lavas, pyroclastic deposits, and comagmatic crystal-rich enclaves outcropping at Dunedin Volcano (Otago region, southern New Zealand). These alkaline magmatic products show both highly and mildly alkaline affinities, trending towards phonolitic and trachytic end-members, respectively. Intermediate rocks are phonotephrites + tephriphonolites (highly alkaline series) and mugearites + benmoreites (mildly alkaline series) with a phenocryst assemblage of clinopyroxene + plagioclase ± amphibole formed at low to mid-crustal levels (i.e., ~29–16 km). Phonolites are porphyritic rocks characterized by alkali feldspar ± amphibole ± clinopyroxene. Their whole-rock compositions are highly enriched in incompatible elements, with variable Ba + Sr contents. A weak negative to slightly positive Eu anomaly is also associated with 87Sr/86Sr ratios of 0.7028–0.7031, which are comparable to those of parental magmas. Geochemical models indicate that phonolites originate as interstitial melts that are generated via abundant alkali feldspar crystallization from a shallow crystalline mush (i.e., ~14–5 km). Strong melt differentiation and extraction is testified by crystal-rich enclaves, as remnants of the mush region. On the other hand, trachytes are phenocryst-poor products strongly depleted in Ba + Sr and with a marked negative Eu anomaly. Trachytes are characterized by 87Sr/86Sr ratios of 0.7040–0.7060, which are different from intermediate rocks and phonolites, and trend towards crustal isotopic compositions. Integrated mass balance, trace element, and energy-constrained modeling confirm that trachytes originate from mildly alkaline magmas interacting with the country rock during feldspar fractionation. We interpret the transition from trachyte to phonolite formation and eruption resulting from the maturation of the plumbing system through accumulation, cooling, and degassing of both highly and mildly alkaline magmas.
    Description: Published
    Description: 106545
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Crystalline mush evolution ; Alkaline magmas ; Crystal-rich enclaves ; Trachyte-phonolite transition ; Magma fractionation ; Crustal assimilation ; Dunedin Volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-22
    Description: Systematic variations in the crystal cargo and whole-rock isotopic compositions of mantle-derived basalts in the intraplate Dunedin Volcano (New Zealand) indicate the influence of a complex mantle-to-crust polybaric plumbing system. Basaltic rocks define a compositional spectrum from low-alkali basalts through mid-alkali basalts to high-alkali basalts. High-alkali basalts display clinopyroxene crystals with sector (hourglass) and oscillatory zoning (Mg#61–82) as well as Fe-rich green cores (Mg#43–69), whereas low-alkali basalts are characterized by clinopyroxenes with unzoned overgrowths (Mg#69–83) on resorbed mafic cores (Mg#78–88), coexisting with reversely zoned plagioclase crystals (An43–68 to An60–84 from core to rim). Complex magma dynamics are indicated by distinctive compositional variations in clinopyroxene phenocrysts, with Cr-rich zones (Mg#74–87) indicating continuous recharge by more mafic magmas. Crystallization of olivine, clinopyroxene and titanomagnetite occurred within a polybaric plumbing system extending from upper mantle to mid-crustal depths (485–1059 MPa and 1147–1286°C), whereas crystallization of plagioclase with subordinate clinopyroxene and titanomagnetite proceeded towards shallower crustal levels. The compositions of high-alkali basalts and mid-alkali basalts resemble those of ocean island basalts and are characterized by FOZO-HIMU isotopic signatures (87Sr/86Sri = 0.70277–0.70315, 143Nd/144Ndi = 0.51286–0.51294 and 206Pb/204Pb = 19.348–20.265), whereas low-alkali basalts have lower incompatible element abundances and isotopic compositions trending towards EMII (87Sr/86Sri = 0.70327–70397, 143Nd/144Ndi = 0.51282–0.51286 and 206Pb/204Pb = 19.278–19.793). High- and mid-alkali basalt magmas mostly crystallized in the lower crust, whereas low-alkali basalt magma recorded deeper upper mantle clinopyroxene crystallization before eruption. The variable alkaline character and isotope composition may result from interaction of low-alkaline melts derived from the asthenosphere with melts derived from lithospheric mantle, possibly initiated by asthenospheric melt percolation. The transition to more alkaline compositions was induced by variable degrees of melting of metasomatic lithologies in the lithospheric mantle, leading to eruption of predominantly small-volume, high-alkali magmas at the periphery of the volcano. Moreover, the lithosphere imposed a filtering effect on the alkalinity of these intraplate magmas. As a consequence, the eruption of low-alkali basalts with greater asthenospheric input was concentrated at the centre of the volcano, where the plumbing system was more developed.
    Description: Published
    Description: egab062
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: alkali basalts ; Dunedin Volcano ; thermobarometry ; primary magma ; lithospheric mantle filter ; Igneous Petrology ; Thermobarometry ; Mantle melting and metasomatism ; Magmatic plumbing systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...