ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-14
    Description: G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human beta(2) adrenergic receptor (beta(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive beta(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 A outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rasmussen, Soren G F -- Choi, Hee-Jung -- Fung, Juan Jose -- Pardon, Els -- Casarosa, Paola -- Chae, Pil Seok -- Devree, Brian T -- Rosenbaum, Daniel M -- Thian, Foon Sun -- Kobilka, Tong Sun -- Schnapp, Andreas -- Konetzki, Ingo -- Sunahara, Roger K -- Gellman, Samuel H -- Pautsch, Alexander -- Steyaert, Jan -- Weis, William I -- Kobilka, Brian K -- GM083118/GM/NIGMS NIH HHS/ -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P01 GM75913/GM/NIGMS NIH HHS/ -- P60DK-20572/DK/NIDDK NIH HHS/ -- R01 GM068603/GM/NIGMS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 GM083118-04/GM/NIGMS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-21/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228869" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor ; Agonists/*chemistry/immunology/metabolism/*pharmacology ; Animals ; Binding Sites ; Camelids, New World ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fragments/*chemistry/*immunology/metabolism/pharmacology ; Ligands ; Models, Molecular ; Movement/drug effects ; Nanostructures/*chemistry ; Opsins/agonists/chemistry/metabolism ; Propanolamines/chemistry/metabolism/pharmacology ; Protein Conformation/drug effects ; Protein Stability/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-14
    Description: G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human beta(2) adrenergic receptor (beta(2)AR) as a guide, we designed a beta(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent beta(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound beta(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5 A resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 mus) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Zhang, Cheng -- Lyons, Joseph A -- Holl, Ralph -- Aragao, David -- Arlow, Daniel H -- Rasmussen, Soren G F -- Choi, Hee-Jung -- Devree, Brian T -- Sunahara, Roger K -- Chae, Pil Seok -- Gellman, Samuel H -- Dror, Ron O -- Shaw, David E -- Weis, William I -- Caffrey, Martin -- Gmeiner, Peter -- Kobilka, Brian K -- 50GM073210/GM/NIGMS NIH HHS/ -- GM56169/GM/NIGMS NIH HHS/ -- GM75915/GM/NIGMS NIH HHS/ -- M083118/PHS HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P01 GM75913/GM/NIGMS NIH HHS/ -- P60DK-20572/DK/NIDDK NIH HHS/ -- R01 GM068603/GM/NIGMS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-20/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228876" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists/*chemistry/*metabolism ; Crystallization ; Crystallography, X-Ray ; Disulfides/chemistry/metabolism ; Drug Inverse Agonism ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Lipid Bilayers/chemistry/metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Procaterol/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-27
    Description: Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the beta2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583103/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cherezov, Vadim -- Rosenbaum, Daniel M -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Kuhn, Peter -- Weis, William I -- Kobilka, Brian K -- Stevens, Raymond C -- F32 GM082028/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM062411/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-04/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-030001/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1258-65. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962520" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage T4/enzymology ; Binding Sites ; Cell Membrane/chemistry/metabolism ; Cholesterol/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Ligands ; Models, Molecular ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Adrenergic, beta-2/*chemistry/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-27
    Description: The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenbaum, Daniel M -- Cherezov, Vadim -- Hanson, Michael A -- Rasmussen, Soren G F -- Thian, Foon Sun -- Kobilka, Tong Sun -- Choi, Hee-Jung -- Yao, Xiao-Jie -- Weis, William I -- Stevens, Raymond C -- Kobilka, Brian K -- F32 GM082028/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM62411/GM/NIGMS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R21 GM075811/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1266-73. Epub 2007 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962519" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/chemistry/metabolism ; Adrenergic beta-Antagonists/chemistry/metabolism ; Amino Acid Sequence ; Bacteriophage T4/enzymology ; Binding Sites ; Cell Line ; Cell Membrane/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Muramidase/chemistry/metabolism ; Propanolamines/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-10
    Description: Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thal, David M -- Sun, Bingfa -- Feng, Dan -- Nawaratne, Vindhya -- Leach, Katie -- Felder, Christian C -- Bures, Mark G -- Evans, David A -- Weis, William I -- Bachhawat, Priti -- Kobilka, Tong Sun -- Sexton, Patrick M -- Kobilka, Brian K -- Christopoulos, Arthur -- U19 GM106990/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):335-40. doi: 10.1038/nature17188. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia. ; ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA. ; Neuroscience, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Indianapolis, Indiana 46285, USA. ; Computational Chemistry and Chemoinformatics, Eli Lilly, Sunninghill Road, Windlesham GU20 6PH, UK. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958838" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Allosteric Regulation/drug effects ; Allosteric Site/drug effects ; Alzheimer Disease ; Crystallization ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Models, Molecular ; Nicotinic Acids/metabolism/pharmacology ; Receptor, Muscarinic M1/*chemistry/metabolism ; Receptor, Muscarinic M4/*chemistry/metabolism ; Schizophrenia ; Static Electricity ; Substrate Specificity ; Surface Properties ; Thiophenes/metabolism/pharmacology ; Tiotropium Bromide/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...