ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Anthesis-silking interval ; Drought ; Quantitative trait loci ; RFLP ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Anthesis-silking interval ; Drought ; Marker-assisted selection ; Quantitative trait loci ; Tropical maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In most maize-growing areas yield reductions due to drought have been observed. Drought at flowering time is, in some cases, the most damaging. In the experiment reported here, trials with F3 families, derived from a segregating F2 population, were conducted in the field under well-watered conditions (WW) and two other water-stress regimes affecting flowering (intermediate stress, IS, and severe stress, SS). Several yield components were measured on equal numbers of plants per family: grain yield (GY), ear number (ENO), kernel number (KNO), and 100-kernel weight (HKWT). Correlation analysis of these traits showed that they were not independent of each other. Drought resulted in a 60% decrease of GY under SS conditions. By comparing yield under WW and SS conditions, the families that performed best under WW conditions were found to be proportionately more affected by stress, and the yield reductions due to SS conditions were inversely proportional to the performance under drought. Moreover, no positive correlation was observed between a drought-tolerance index (DTI) and yield under WW conditions. The correlation between GY under WW and SS conditions was 0.31. Therefore, in this experiment, selection for yield improvement under WW conditions only, would not be very effective for yield improvement under drought. Quantitative trait loci (QTLs) were identified for GY, ENO and KNO using composite interval mapping (CIM). No major QTLs, expressing more then 13% of the phenotypic variance, were detected for any of these traits, and there were inconsistencies in their genomic positions across water regimes. The use of CIM allowed the evaluation of QTL-by-environment interactions (Q×E) and could thus identify “stable” QTLs CIMMYT, Apartado Postal 6-641, 06600 Mexico D.F., Mexico across drought environments. Two such QTLs for GY, on chromosomes 1 and 10, coincided with two stable QTLs for KNO. Moreover, four genomic regions were identified for the expression of both GY and the anthesis-silking interval (ASI). In three of these, the allelic contributions were for short ASI and GY increase, while for that on chromosome 10 the allelic contribution for short ASI corresponded to a yield reduction. From these results, we hypothesize that to improve yield under drought, marker-assisted selection (MAS) using only the QTLs involved in the expression of yield components appears not to be the best strategy, and neither does MAS using only QTLs involved in the expression of ASI. We would therefore favour a MAS strategy that takes into account a combination of the “best QTLs” for different traits. These QTLs should be stable across target environments, represent the largest percentage possible of the phenotypic variance, and, though not involved directly in the expression of yield, should be involved in the expression of traits significantly correlated with yield, such as ASI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...