ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-23
    Description: Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet ("airborne transmission") between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herfst, Sander -- Schrauwen, Eefje J A -- Linster, Martin -- Chutinimitkul, Salin -- de Wit, Emmie -- Munster, Vincent J -- Sorrell, Erin M -- Bestebroer, Theo M -- Burke, David F -- Smith, Derek J -- Rimmelzwaan, Guus F -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- DP1-OD000490-01/OD/NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1534-41. doi: 10.1126/science.1213362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723413" target="_blank"〉PubMed〈/a〉
    Keywords: Air Microbiology ; Amino Acid Substitution ; Animals ; Antiviral Agents/pharmacology ; Containment of Biohazards ; Disease Models, Animal ; Female ; *Ferrets ; Hemagglutinin Glycoproteins, Influenza ; Virus/chemistry/genetics/immunology/metabolism ; Humans ; Immune Sera ; Influenza A Virus, H5N1 Subtype/drug effects/*genetics/*pathogenicity/physiology ; Influenza in Birds/epidemiology/virology ; Influenza, Human/epidemiology/transmission/*virology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutation ; Orthomyxoviridae Infections/transmission/*virology ; Oseltamivir/pharmacology ; Pandemics ; Poultry ; RNA Replicase/chemistry/genetics ; Reassortant Viruses/pathogenicity ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Serial Passage ; Sialic Acids/metabolism ; Viral Proteins/chemistry/genetics ; Virulence ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-03-25
    Description: Highly pathogenic avian influenza virus (H5N1) may cause severe lower respiratory tract (LRT) disease in humans. However, the LRT cells to which the virus attaches are unknown for both humans and other mammals. We show here that H5N1 virus attached predominantly to type II pneumocytes, alveolar macrophages, and nonciliated bronchiolar cells in the human LRT, and this pattern was most closely mirrored in cat and ferret tissues. These findings may explain, at least in part, the localization and severity of H5N1 viral pneumonia in humans. They also identify the cat and the ferret as suitable experimental animals based on this criterion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Riel, Debby -- Munster, Vincent J -- de Wit, Emmie -- Rimmelzwaan, Guus F -- Fouchier, Ron A M -- Osterhaus, Ab D M E -- Kuiken, Thijs -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):399. Epub 2006 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16556800" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchi/cytology/*virology ; Cats ; Disease Models, Animal ; Epithelial Cells/virology ; Ferrets ; Humans ; Influenza A Virus, H5N1 Subtype/metabolism/*pathogenicity ; Influenza, Human/virology ; Macaca ; Macrophages, Alveolar/*virology ; Mice ; Orthomyxoviridae Infections/virology ; Pneumonia, Viral/virology ; Pulmonary Alveoli/cytology/*virology ; Receptors, Virus/metabolism ; Respiratory Mucosa/*virology ; Species Specificity ; Trachea/cytology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-04
    Description: The swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more extensive virus replication occurring in the respiratory tract. Replication of seasonal A(H1N1) virus was confined to the nasal cavity of ferrets, but the 2009 A(H1N1) influenza virus also replicated in the trachea, bronchi, and bronchioles. Virus shedding was more abundant from the upper respiratory tract for 2009 A(H1N1) influenza virus as compared with seasonal virus, and transmission via aerosol or respiratory droplets was equally efficient. These data suggest that the 2009 A(H1N1) influenza virus has the ability to persist in the human population, potentially with more severe clinical consequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munster, Vincent J -- de Wit, Emmie -- van den Brand, Judith M A -- Herfst, Sander -- Schrauwen, Eefje J A -- Bestebroer, Theo M -- van de Vijver, David -- Boucher, Charles A -- Koopmans, Marion -- Rimmelzwaan, Guus F -- Kuiken, Thijs -- Osterhaus, Albert D M E -- Fouchier, Ron A M -- HHSN266200700010C/PHS HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):481-3. doi: 10.1126/science.1177127. Epub 2009 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Influenza Center and Department of Virology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574348" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchi/virology ; Child, Preschool ; Disease Models, Animal ; Female ; Ferrets ; Humans ; Influenza A Virus, H1N1 Subtype/*pathogenicity ; Influenza, Human/pathology/transmission/*virology ; Orthomyxoviridae Infections/pathology/transmission/virology ; Respiratory System/virology ; Seasons ; Swine/virology ; Trachea/virology ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...