ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1995), S. 496-505 
    ISSN: 1432-136X
    Keywords: Diffusion flux ; Glycogenolysis ; Phosphagen function ; Spermatozoa ; Lugworm, Arenicola marina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The different phosphagen systems in the lugworm Arenicola marina, the phosphotaurocyamine/taurocyamine kinase system of the body wall and the phosphocreatine/creatine kinase system of the spermatozoa, have been investigated to answer the question whether the change reflects different functional modes of these phosphagen systems. Enzyme analyses have shown that in contrast to the body wall taurocyamine kinase, creatine kinase of spermatozoa exists in at least two different forms which are compartmented in the mitochondria (creatine kinase I) and in the flagellum (creatine kinase II). Creatine kinase I is strongly attached to cell structures which require detergents and high phosphate concentrations for solubilization. The affinities of taurocyamine kinase and creatine kinase for all substrates are very similar except the extremely high K m for creatine of both creatine kinase I and II. The level of creatine in spermatozoa is fivefold higher than taurocyamine in the body wall at similar phosphorylation potential (ATP/ADOfree) and ATP-buffer capacity (phosphagen/ATP), reflecting the higher equilibrium constants of the creatine kinase reaction compared to that of the taurocyamine kinase reaction (Ellington 1989). The high creatine concentration gives the phosphocreatine/creatine kinase system an advantage over the phosphotaurocyamine/taurocyamine kinase system for transport of energyrich phosphate at high phosphorylation potential by increasing the radial diffusion flux. The maximum diffusive flux of free ADP in spermatozoa is three orders of magnitude below the respiratory ATP production while the creatine flux would allow an unlimited energy transport over the long diffusion distance. In lugworm body wall, however, the low ATP turnover and the low diffusion distances between mitochondria and myosin-ATPases do not require a phosphagen shuttle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...