ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(1),(2020): e2019JC015167, doi:10.1029/2019JC015167.
    Description: Manganese (Mn) is distributed widely throughout the global ocean, where it cycles between three oxidation states that each play important biogeochemical roles. The speciation of Mn in seawater was previously operationally defined on filtration, with soluble Mn presumed to be Mn(II) and solid‐phase Mn as Mn(III/IV) oxides. Recent findings of abundant soluble Mn(III) complexes (Mn(III)‐L) highlights the need to reexamine the redox cycling of Mn, as these complexes can donate or accept electrons. To better understand the complex cycling of Mn in coastal waters, the distribution of Mn species at four Northwest Atlantic sites with different characteristics was examined. Diurnal influences on Mn speciation were investigated within a productive site. At all sites, Mn(III)‐L complexes dominated, particularly in surface waters, and Mn oxides were low in abundance in surface waters but high in bottom waters. Despite intrasite similarities, Mn speciation was highly variable between our stations, emphasizing the diverse processes that impact Mn redox. Diel Mn measurements revealed that the cycling of Mn is also highly variable over time, even on time scales as short as hours. We observed a change of over 100 nM total Mn over 17 hrs and find that speciation changed drastically. These changes could include contributions from biological, light‐mediated, and/or abiotic mechanisms but more likely point to the importance of lateral mixing at coastal sites. This exploration demonstrates the spatial and temporal variability of the Mn redox cycle and indicates that single timepoint vertical profiling is not sufficient when describing the geochemistry of dynamic coastal systems.
    Description: This work was funded by grants from the Chemical Oceanography program of the National Science Foundation (OCE‐1355720 to CMH and CHL). Véronique Oldham thanks Woods Hole Oceanographic Institution for the receipt of the WHOI Postdoctoral Scholarship. Thanks also to Kevin Sutherland, Jen Karolweski, Gabriella Farfan, Kalina Grabb, Kaitlin Bowman, Alison Agather, and Lindsey Starr for the shipboard sampling assistance, as well as the captain and crew of the R/V Endeavor who made the sampling for this research possible. All data presented in the manuscript are available through the Biological and Chemical Oceanography Data Management Office (BCO‐DMO) under Project 756930 at the following link (https://www.bco‐dmo.org/project/756930).
    Description: 2020-06-20
    Keywords: Manganese ; Redox ; Trace Metal ; Diel Cycle ; Coastal Ocean ; Organic Complexation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...