ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3225, doi:10.1029/2011PA002273.
    Description: The midpoint of the Last Termination occurred 4,000 years earlier in the deep Atlantic than the deep Pacific according to a pair of benthic foraminiferal δ18O records, seemingly implying an internal circulation shift because the lag is much longer than the deep radiocarbon age. Here a scenario where the lag is instead caused by regional surface boundary condition changes, delays due to oceanic transit timescales, and the interplay between temperature and seawater δ18O (δ18Ow) is quantified with a tracer transport model of the modern-day ocean circulation. Using an inverse method with individual Green functions for 2,806 surface sources, a time history of surface temperature and δ18Ow is reconstructed for the last 30,000 years that is consistent with the foraminiferal oxygen-isotope data, Mg/Ca-derived deep temperature, and glacial pore water records. Thus, in the case that the ocean circulation was relatively unchanged between glacial and modern times, the interbasin lag could be explained by the relatively late local glacial maximum around Antarctica where surface δ18Ow continues to rise even after the North Atlantic δ18Ow falls. The arrival of the signal of the Termination is delayed at the Pacific core site due to the destructive interference of the still-rising Antarctic signal and the falling North Atlantic signal. This scenario is only possible because the ocean is not a single conveyor belt where all waters at the Pacific core site previously passed the Atlantic core site, but instead the Pacific core site is bathed more prominently by waters with a direct Antarctic source.
    Description: G.G. is supported by NSF grant OIA-1124880 and the WHOI Arctic Research Initiative.
    Description: 2013-03-06
    Keywords: Deglaciation ; Foraminiferal data ; Inverse methods ; Numerical modeling ; Oxygen-18 ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 1470-1489, doi:10.1002/2014PA002743.
    Description: The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.
    Description: 2016-05-12
    Keywords: Oxygen isotopes ; Inverse modeling ; Deglaciation ; Tracers ; Ocean circulation ; Green's function
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...