ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2012. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 72 (2013): 72–87, doi:10.1016/j.dsr.2012.11.005.
    Description: Nearly every spring since 1990, hydrographic data have been collected along a section in the Labrador Sea known as AR7W. Since 1995, lowered acoustic doppler current profiler (LADCP) data have also been collected. In this work we use data from six of these sections, spanning the time period 1995 through 2008, to determine absolute velocity across AR7W and analyze the main features of the general circulation in the area. We find that absolute velocity fields are characterized by strong, nearly barotropic flows all along the section, meaning there is no “level of no motion” for geostrophic velocity calculations. There is strong variability from year to year, especially in the strength of the boundary currents at each end; nevertheless, combining data from.all 6 sections yields a well-organized velocity field resembling that presented by Pickart and Spall (2007), except that our velocities tend to be stronger: there is a cyclonic boundary current system with offshore recirculations at both ends of the line; the interior is filled with virtually uniform, top-to-bottom bands of velocity with alternating signs. At the southwestern end of the section, the LADCP data reveal a dual core of the Labrador Current at times when horizontal resolution is adequate. At the northeastern end, the location of the recirculation offshore of the boundary current is bimodal, and hence the apparent width of the boundary current is bimodal as well. In the middle of the section, we have found a bottom current carrying overflow waters along the Northwest Atlantic Mid-Ocean Channel, suggesting one of various possible fast routes for those waters to reach the central Labrador Sea. We have used the hydrographic data to compute geostrophic velocities, referenced to the LADCP profiles, as well as to compute ocean heat transport across AR7W for four of our sections. For all but one year, these fluxes are comparable to the mean air–sea heat flux that occurs between AR7W and Davis Strait from December to May (O(50–80 TW)), and much larger than the annual average values (O(10–20 TW)).
    Description: This material is based upon work supported by the National Science Foundation under Grant No. OCE-0622640. Igor Yashayaev is supported by the ocean climate monitoring program of the Department of Fisheries and Oceans Canada.
    Keywords: Labrador Sea ; Boundary currents ; Lowered acoustic doppler current profiler ; Ocean heat transport ; Geostrophic velocity ; Deep ocean circulation ; Meridional overturning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C11008, doi:10.1029/2003JC002103.
    Description: In July–August 1997, a hydrographic/Acoustic Doppler Current Profiler (ADCP)/tracer section was occupied along 52°W in the North Atlantic as part of the World Ocean Circulation Experiment Hydrographic Program. Underway and lowered ADCP (LADCP) data have been used to reference geostrophic velocities calculated from the hydrographic data; additional (small) velocity adjustments provided by an inverse model, constraining mass and silicate transports in 17 neutral density layers, yield the absolute zonal velocity field for 52°W. We find a vigorous circulation throughout the entire section, with an unusually strong Gulf Stream (169 Sv) and southern Deep Western Boundary Current (DWBC; 64 Sv) at the time of the cruise. At the northern boundary, on the west side of the Grand Banks of Newfoundland, we find the westward flowing Labrador Current (8.6 Sv), whose continuity from the Labrador Sea, east of our section, has been disputed. Directly to the south we identify the slopewater current (12.5 Sv eastward) and northern DWBC (12.5 Sv westward). Strong departures from strictly zonal flow in the interior, which are found in the LADCP data, make it difficult to diagnose the circulation there. Isolated deep property extrema in the southern portion, associated with alternating bands of eastward and westward flow, are consistent with the idea that the rough topography of the Mid-Atlantic Ridge, directly east of our section, causes enhanced mixing of Antarctic Bottom Water properties into overlying waters with distinctly different properties. We calculate heat and freshwater fluxes crossing 52°W that exceed estimates based on air-sea exchanges by a factor of 1.7.
    Description: This work was supported by NSF grants OCE95-29607, OCE 95-31864, OCE98-18266, and OCE-0219644.
    Keywords: North Atlantic Circulation ; Gulf Stream ; Deep Western Boundary Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...