ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deep Sea Drilling Project; DSDP  (4)
Collection
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lang, Thomas H; Wise, Sherwood W (1987): Neogene and Paleocene-Maestrichtian calcareous nannofossil stratigraphy, Deep Sea Drilling Project Sites 604 and 605, upper continental rise off New Jersey: Sedimentation rates, hiatuses, and correlations with seismic stratigraphy. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 661-683, https://doi.org/10.2973/dsdp.proc.93.117.1987
    Publication Date: 2023-05-12
    Description: Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McCartney, Kevin; Wise, Sherwood W (1987): Silicoflagellates and ebridians from the New Jersey Transect, Deep Sea Drilling Project Leg 93, Sites 604 and 605. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 801-814, https://doi.org/10.2973/dsdp.proc.93.127.1987
    Publication Date: 2023-05-12
    Description: Well-preserved and diverse silicoflagellate and ebridian populations are found in the lower and middle Eocene sediments of DSDP Site 605 and the upper Miocene sediments of DSDP Site 604. The ebridians outnumber the silicoflagellates in the siliceous interval of Site 605, but are less numerous at Site 604. The abundances of the various taxa are tabulated.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jiang, Yan Wen; Wise, Sherwood W (1987): Paleocene-Eocene calcareous nannofossils of onshore wells from the Coastal Plain of New Jersey and Maryland, U.S.A. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 699-711, https://doi.org/10.2973/dsdp.proc.93.119.1987
    Publication Date: 2023-05-12
    Description: Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Muza, Jay Phillip; Wise, Sherwood W; Covington, James M (1987): Neogene calcareous nannofossils from Deep Sea Drilling Project Site 603, lower continental rise, western North Atlantic: Biostratigraphy and correlations with magnetic and seismic stratigraphy. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 593-616, https://doi.org/10.2973/dsdp.proc.93.115.1987
    Publication Date: 2023-05-12
    Description: Calcareous nannofossils are sufficiently numerous in the upper 900 m of the Neogene sediment drift cored beneath the lower continental rise at DSDP Site 603 to permit delineation of zones, correlations with the paleomagnetic data (Pliocene-Pleistocene only), and the detection of major Miocene hiatuses and their correlation with seismic stratigraphy. Holes 603, 603B, and 6O3C were spudded in lower Pleistocene sediments just east of the crest of the Hatteras Outer Ridge, and all nannofossil zones and subzones are accounted for down to a hiatus within the middle Tortonian (late Miocene) Zone CN8. This hiatus lies some 30 m above a more extensive disconformity between 661 and 672 m where sediments of Subzone CN7a and a portion of Zone CN6 have been removed. The resulting hiatus is correlated with local reflection Horizon M2, which is considered equivalent to the regional Reflector Merlin. The hiatus between 661 and 672 m dates Merlin at this site between about 9.6 and 10.4 Ma. A strong, parallel, unnamed reflector is correlated with the superjacent hiatus within CN8, and is dated between 8.5 and 9 Ma. These disconformities help delineate a "condensed" interval, which falls within the Vail et al. (1980) cycle TM3.1. This eustatic event has been characterized as the sharpest and most profound sea-level drop of the late Miocene. The lower Tortonian "condensed" interval at Site 603 is closely correlative with spectacular debris flows cored in presumed canyon fill deposits immediately above reflection Horizon M2/Merlin at DSDP Site 604 on the upper rise off New Jersey. We suggest that the erosion along the lower rise at Site 603 and the synchronous canyon cutting evidenced by the debris flows on the upper rise at Site 604, both associated with the regional Reflector Merlin, are linked closely to Southern Hemisphere glacial activity which led to the formation of the West Antarctic Ice Sheet. Apart from the lower Tortonian "condensed" interval, the drift sediments of the Hatteras Outer Ridge are primarily muddy contourites, augmented to some extent by fine turbidites in the lower portion. Most were deposited at a rate of about 87 m/Ma. Just after the late Miocene erosional events, sedimentation rates during nannofossil Zone CN8b time were 192 m/Ma, about double that for the overlying section. This suggests that the site was then the locus of deposition for material eroded during canyon-cutting events along the slope and shelf. The lowest sample dated (911 m) is assigned to Subzone CN5b (not older than 13.1 Ma). A rare glauconitic silty sand turbidite at 834.8 m contains upper Eocene coccoliths, probably eroded from submarine outcrops along the slope, perhaps during a brief middle Miocene canyon-cutting episode.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...