ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0173-0835
    Keywords: Cervical carcinoma ; Two-dimensional polyacrylamide gel electrophoresis ; Mass spectrometry ; Immobilized pH gradient ; Cytokine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Two-dimensional (2-D) polyacrylamide gel electrophoresis combined with mass spectrometry is a powerful combination of technologies that allows high resolution separation of proteins and their rapid identification. Immobilized pH gradient (IPG) first-dimensional gels have several advantages over carrier ampholyte isoelectric focusing, including a high degree of reproducibility, good protein spot resolution, and a selection of pH range. Here we demonstrate the utility and efficacy of combining IPG 2-D gel electrophoresis with mass spectrometry to identify interferon-γ- (IFN) and tumor necrosis factor (TNF)-regulated proteins in ME-180 cervical carcinoma cells. Three cytokine-regulated proteins have been identified, using imidazole-zinc-stained preparative IPG 2-D gels and in-gel tryptic digestion followed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry for determination of peptide masses and sequences: (1) triosephosphate isomerase, a glycolytic pathway enzyme, (2) proteasome subunit C3, which is important in protein degradation, and (3) Ran, a GTP-binding protein important in cell cycle regulation, protein import into the nucleus, and RNA export from the nucleus.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...