ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cyclobis(paraquat-p-phenylene)  (1)
  • Electronic spectroscopy  (1)
  • 1
    ISSN: 1434-193X
    Keywords: Catenanes ; Cyclophanes ; Electrochemistry ; Electronic spectroscopy ; Template-directed synthesis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: -Catenanes composed of two, three, five, or seven interlocked macrocycles have been synthesized in yields ranging from 1 to 30%. Their template-directed syntheses rely on a series of cooperative noncovalent bonding interactions between π-electron rich 1,5-dioxynaphthalene ring systems and π-electron deficient bipyridinium units which are incorporated within the macrocyclic components. The interlocked structure associated with one of the [3]catenanes was demonstrated unequivocally by single crystal X-ray analysis which also revealed the formation of polar stacks stabilized by intermolecular [π···π] interactions. The number of interlocked components of each catenane was determined by liquid secondary ion, matrix-assisted laser desorption ionization/time-of-flight, and/or electrospray mass spectrometries. The absorption spectra, emission spectra, and electrochemical properties of the macrocyclic components and of the catenanes have been investigated. Two kinds of charge-transfer absorption bands (intramolecular in the cyclophanes containing electron-donor and electron-acceptor units, intercomponent in the catenanes) have been found. Such charge-transfer excited states are responsible for the quenching of the potentially fluorescence units of the cyclophanes, and of the crown ethers in the catenanes. Charge-transfer electronic interactions are also evidenced by the electrochemical behavior. Correlations among the redox potentials of the various compounds are reported and discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-193X
    Keywords: Chromophoric unit ; Crown compounds ; Cyclobis(paraquat-p-phenylene) ; Catenanes ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A modified bis-p-phenylene-34-crown-10 ring in which one of the 1,4-dioxybenzene units has been replaced by a 9,10-dioxyanthracene unit has been employed as a template for the formation of cyclobis(paraquat-p-phenylene). The [2]catenane which results has been shown by 1H NMR spectroscopy to exist in solution exclusively in the translationally isomeric form in which (a) only the 1,4-dioxybenzene ring occupies the central cavity of the tetracationic cyclophane and (b) the crown ether ring is prevented from circumrotating through the cyclophane by the large 9,10-dioxyanthracene unit. The absorption spectrum and luminescence properties of this new [2]catenane and of its crown ether component in its free state have been investigated and compared with those of 1,4-dimethoxybenzene and a model anthracene derivative, carrying methylated triethylene glycol chains on the 9 and 10 positions of the anthracene ring. While the absorption spectrum of the crown ether is the sum of the spectra of the two component chromophoric moieties, its emission spectrum shows only the fluorescence band of the 9,10-dioxyanthracene-type unit. The excitation spectrum shows that the disappearance of the 1,4-dioxybenzene type emission in the crown ether is due to a very efficient (kq ≥ 4 × 1010 s-1) energy-transfer process from the 1,4-dioxybenzene to the 9,10-dioxyanthracene type unit. The absorption spectrum of the [2]catenane is noticeably different from the sum of the spectra of its two cyclic components, particularly as far as the presence of a very broad charge-transfer (CT) band in the visible spectral region (λmax = 545 nm, εmax = 615 M-1 cm-1) is concerned.Comparison with the CT band of a model compound shows that the very broad CT band of the [2]catenane is in fact the result of two component bands originating from the interaction of the two different electron-donor units (1,4-dioxybenzene and 9,10-dioxyanthracene type) present in the crown ether with the electron-acceptor bipyridinium-type units of the cyclobis(paraquat-p-phenylene). The emission spectrum of the [2]catenane does not show any band because of the quenching action (rate constant kq ≥ 5 × 1010 s-1) of the low-energy non-luminescent charge-transfer levels on the higher energy, potentially luminescent levels of the crown ether.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...