ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Consider the problem of detecting and localizing a faint object moving In an "essentially stationary" background, using a sequence of two-dimensional low-SNR images of the scene. A natural approach consists of "digitizing" each snapshot into a discrete set of observations, sufficiently (perhaps not exactly) matched to the object In question, then tracking the object using an appropriate stochastic filter. The tracking would be expected to make up for the low signal-to-noise ratio, this allowing one to "coherently" process successive images in order to beat down the noise and localize the object. Thus, "tracking" here does not refer to the usual notion of detecting then tracking: rather, we track in order to detect The problem then becomes one of choosing the appropriate image representation as well as the optimal (and necessarily nonlinear filter. We propose exact and approximate solutions using wavelets and the Zakai equation. The smoothness of the wavelets used is required in the derivation of the evolution equation for the conditional density giving the filter, and their orthogonality makes it possible to carry out actual computations of the Ito- and change-of-gauge-terms in the algorithm effectively.
    Keywords: Cybernetics
    Type: IEECS-P95096 , IEEE Transactions on Pattern Analysis and Machine Intelligence; 17; 11; 1069-1078
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...