ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cybernetics, Artificial Intelligence and Robotics  (2)
  • 1
    Publication Date: 2018-06-12
    Description: For all past and current human space missions, the final scheduling of tasks to be done in space has been devoid of crew control, flexibility, and insight. Ground controllers, with minimal input from the crew, schedule the tasks and uplink the timeline to the crew or uplink the command sequences to the hardware. Prior to the International Space Station (ISS), the crew could make requests about tomorrow s timeline, they could omit a task, or they could request that something in the timeline be delayed. This lack of control over one's own schedule has had negative consequences. There is anecdotal consensus among astronauts that control over their own schedules will mitigate the stresses of long duration missions. On ISS, a modicum of crew control is provided by the job jar. Ground controllers prepare a task list (a.k.a. "job jar") of non-conflicting tasks from which jobs can be chosen by the in space crew. Because there is little free time and few interesting non-conflicting activities, the task-list approach provides little relief from the tedium of being micro-managed by the timeline. Scheduling for space missions is a complex and laborious undertaking which usually requires a large cadre of trained specialists and suites of complex software tools. It is a giant leap from today s ground prepared timeline (with a job jar) to full crew control of the timeline. However, technological advances, currently in-work or proposed, make it reasonable to consider scheduling a collaborative effort by the ground-based teams and the in-space crew. Collaboration would allow the crew to make minor adjustments, add tasks according to their preferences, understand the reasons for the placement of tasks on the timeline, and provide them a sense of control. In foreseeable but extraordinary situations, such as a quick response to anomalies and extended or unexpected loss of signal, the crew should have the autonomous ability to make appropriate modifications to the timeline, extend the timeline, or even start over with a new timeline. The Vision for Space Exploration (VSE), currently being pursued by the National Aeronautics and Space Administration (NASA), will send humans to Mars in a few decades. Stresses on the human mind will be exacerbated by the longer durations and greater distances, and it will be imperative to implement stress-reducing innovations such as giving the crew control of their daily activities.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: As humans venture farther from earth for longer durations, it will become essential for those on the journey to have significant control over the scheduling of their own activities as well as the activities of their companion systems and robots. However, there are many reasons why the crew will not do all the scheduling; timelines will be the result of collaboration with ground personnel. Emerging technologies such as in-space message buses, delay-tolerant networks, and in-space internet will be the carriers on which the collaboration rides. Advances in scheduling technology, in the areas of task modeling, scheduling engines, and user interfaces will allow the crew to become virtual scheduling experts. New concepts of operations for producing the timeline will allow the crew and the ground support to collaborate while providing safeguards to ensure that the mission will be effectively accomplished without endangering the systems or personnel.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: The 9th International Conference on Space Operations (SpaceOps 2006); Jun 19, 2006 - Jun 23, 2006; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...