ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Space Mining for resources such as water ice, and regolith, which contain many elements in the form of metals, minerals, volatiles and other compounds, is a necessary step in Space Resource Utilization. One of the primary goals is to extract propellants from the regolith such as oxygen and hydrogen which could then be used for in-space transportation. In addition, the space mining system can be used for various construction tasks that can benefit human and robotic exploration as well as scientific investigations based on the exposed topography. The National Aeronautics & Space Administration (NASA) Lunabotics Mining Competition is a university-level competition designed to engage and retain students in science, technology, engineering and mathematics (STEM). NASA will directly benefit from the competition by encouraging the development of innovative lunar excavation concepts from universities which may result in clever ideas and solutions which could be applied to an actual lunar excavation device or payload. The challenge is for students to design and build a remote controlled or autonomous excavator, called a lunabot, that can collect and deposit a minimum of 10 kilograms of lunar simulant within 15 minutes. The complexities of the challenge include the abrasive characteristics of the lunar simulant, the weight and size limitations of the lunabot, and the ability to control the lunabot from a remote control center or operate autonomously. This paper will present an update of the results and lessons learned during the first and second annual Lunabotics Mining Competitions held in May 2010 and May 2011. It will also preview the 2012 competition with a review of the revised rules. In 2010,22 United States (US) universities competed, and in May 2011 the competition was opened to international participation. In 2011, 36 teams actually competed from 26 USA states and 4 foreign countries (India, Bangladesh, Colombia and Canada). This combined total directly inspired an estimated 653 university students. In 2012 more students and the public will be engaged via internet broadcasting and social networking media. The various designs will be cataloged and categorized to provide information to future Lunabotics mining robot designers and competitors. It is also expected to be of value for actual future space missions, as knowledge is gained from testing many innovative prototypes in simulated lunar regolith.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2012-094 , American Society of Civil Engineers, Earth & Space 2012 Conference; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2012-302 , ROBEX Initial Meeting; Nov 19, 2012; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Overview: Design, build & compete remote controlled robot (Lunabot). Excavate Black Point 1 (BP-1) Lunar Simulant. Deposit minimum of 10 kg of BP-1 within 15 minutes $5000, $2500, $1000 Scholarships for most BP-1 excavated. May 23-28, 2011. Kennedy Space Center, FL. International Teams Allowed for the First Time. What is a Lunabot? a) Robot Controlled Remotely or Autonomously. b) Visual and Auditory Isolation from Operator. c) Excavates Black Point 1 (BP-l) Simulant. d) Weight Limit - 80 kg. e)Dimension Limits -1.5m width x .75m length x 2m height. f) Designed, Built and Tested by University Student Teams.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2011-129 , KSC-2011-129R , Space Resources Roundtable/Planetary and Terrestrial Mining Sciences Symposium; Jun 19, 2011 - Jun 22, 2011; Ottawa; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-E-DAA-TN25612
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 100 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2011-262 , ASCE Earth and Space 2012 Conference; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: NASA's Lunabotics Mining Competition is designed to promote the development of interest in space activities and STEM (Science, Technology, Engineering, and Mathematics) fields. The competition uses excavation, a necessary first step towards extracting resources from the regolith and building bases on the moon. The unique physical properties of lunar regolith and the reduced 1/6th gravity, vacuum environment make excavation a difficult technical challenge. Advances in lunar regolith mining have the potential to significantly contribute to our nation's space vision and NASA space exploration operations. The competition is conducted annually by NASA at the Kennedy Space Center Visitor Complex. The teams that can use telerobotic or autonomous operation to excavate a lunar regolith geotechnical simulant, herein after referred to as Black Point-1 (or BP-1) and score the most points (calculated as an average of two separate 10-minute timed competition attempts) will eam points towards the Joe Kosmo Award for Excellence and the scores will reflect ranking in the on-site mining category of the competition. The minimum excavation requirement is 10.0 kg during each competition attempt and the robotic excavator, referred to as the "Lunabot", must meet all specifications. This paper will review the achievements of the Lunabotics Mining Competition in 2010 and 2011, and present the new rules for 2012. By providing a framework for robotic design and fabrication, which culminates in a live competition event, university students have been able to produce sophisticated lunabots which are tele-operated. Multi-disciplinary teams are encouraged and the extreme sense of accomplishment provides a unique source of inspiration to the participating students, which has been shown to translate into increased interest in STEM careers. Our industrial sponsors (Caterpillar, Newmont Mining, Harris, Honeybee Robotics) have all stated that there is a strong need for skills in the workforce related to robotics and automated machines. In 2010, 22 United States (US) universities competed, and in May 2011 the competition was opened to international participation, with 46 Universities attending. There were 12 international teams and 34 US teams. This combined total directly inspired an estimated 544 university students. More students and the public were engaged via internet broadcasting and social networking media. This is expected to be of value for actual future space missions, as knowledge is gained from testing many innovative prototypes in simulated lunar regolith. More information is available at www.nasa.gov/lunabotics/.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2011-261 , ASCE Earth and Space 2012 Conference; Apr 15, 2012 - Apr 18, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (〈50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-13664 , NASA Tech Briefs, January 2013; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The excavation of lunar regolith is desirable for use as a feedstock for oxygen production processes as well as civil engineering purposes and for the fabrication of parts and structures. This is known as In-Situ Resource Utilization (ISRU). More recently, there has been mounting evidence that water ice exists at the poles of the Moon, buried in the regolith where thermally stable conditions exist. This means that regolith excavation will be required to mine the water ice which is believed to be. mixed in with the regolith, or bonded to it. The mined water ice can then be electrolyzed to produce hydrogen and oxygen propellants which could form the basis of a cis-lunar transportation system using in-situ derived propellants. In 2007, the National Aeronautics & Space Administration (NASA) sponsored a Lunar Regolith Excavation Competition as part of its Centennial Challenges program, The competition was not won and it was held again in 2008 and 2009, when it was won by a university team. A $500,000 prize was awarded to the winning team by NASA. In 2010, NASA continued the competition as a spinoff of the Centennial Challenges, which is restricted to university participation only. This competition is known as the "Lunabotics Mining Competition" and is hosted by NASA at Kennedy Space Center. Twenty three American university teams competed in the 2010 Lunabotics Mining Competition. The competition was held again in May 2011 with over 60 teams registered, including international participation. The competition will be held again in May 2012 at Kennedy Space Center in Florida. . This paper contains a thorough review of the various regolith eX,cavation robotic device prototypes that competed in these NASA competitions, and will. classify the machines and their methods of excavation to document the variety of ideas that were spawned and built to compete at these events. It is hoped that documentation of these robots will serve to help future robotic excavation designers and provide a historical reference for future lunar mining machine endeavors.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2011-260 , AIAA SPACE 2011 Conference and Exposition; Sep 27, 2011 - Sep 29, 2011; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The NASA Exploration Systems Mission Directorate (ESMD) and Penn State technology commercialization project was designed to assist in the maturation of a NASA SBIR Phase III technology. The project was funded by NASA's ESMD Education group with oversight from the Surface Systems Office at NASA Kennedy Space Center in the Engineering Directorate. Two Penn State engineering student interns managed the project with support from Honeybee Robotics and NASA Kennedy Space Center. The objective was to find an opportunity to integrate SBIR-developed Regolith Extractor and Sampling Technology as the payload for the future Lunar Lander or Rover missions. The team was able to identify two potential Google Lunar X Prize organizations with considerable interest in utilizing regolith acquisition and transfer technology.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-2010-206 , AIAA SPACE 2010 Conference and Exposition; Aug 30, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...