ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We describe a robotic platform for traversing and manipulating a modular 3D lattice structure. The robot is designed to operate within a specifically structured environment, which enables low numbers of degrees of freedom (DOF) compared to robots performing comparable tasks in an unstructured environment. This allows for simple controls, as well as low mass and cost. This approach, designing the robot relative to the local environment in which it operates, results in a type of robot we call a "relative robot." We describe a bipedal robot that can locomote across a periodic lattice structure, as well as being able to handle, manipulate, and transport building block parts that compose the lattice structure. Based on a general inchworm design, the robot has added functionality for traveling over and operating on a host structure.
    Keywords: Spacecraft Design, Testing and Performance; Structural Mechanics; Cybernetics, Artificial Intelligence and Robotics
    Type: ARC-E-DAA-TN38470 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper describes a novel class of robots specifically adapted to climb periodic lattices, which we call 'Relative Robots'. These robots use the regularity of the structure to simplify the path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. They can perform vital inspection and repair tasks within the structure that larger truss construction robots could not perform without modifying the structure. We detail a specific type of relative robot designed to traverse a cuboctahedral (CubOct) cellular solids lattice, show how the symmetries of the lattice simplify the design, and test these design methodologies with a CubOct relative robot that traverses a 76.2 mm (3 in.) pitch lattice, MOJO (Multi-Objective JOurneying robot). We perform three locomotion tasks with MOJO: vertical climbing, horizontal climbing, and turning, and find that, due to changes in the orientation of the robot relative to the gravity vector, the success rate of vertical and horizontal climbing is significantly different.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: ARC-E-DAA-TN56030 , ICRA 2017 - IEEE International Conference on Robotics and Automation; May 29, 2017 - Jun 03, 2017; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: A robotic platform for traversing and manipulating a modular 3D lattice structure is described. The robot is designed specifically for its tasks within a structured environment, and is simplified in terms of its numbers of degrees of freedom (DOF). This allows for simpler controls and a reduction of mass and cost. Designing the robot relative to the environment in which it operates results in a specific type of robot called a "relative robot". Depending on the task and environment, there can be a number of relative robots. This invention describes a bipedal robot which can locomote across a periodic lattice structure made of building block parts. The robot is able to handle, manipulate, and transport these blocks when there is more than one robot. Based on a general inchworm design, the robot has added functionality while retaining minimal complexity, and can perform numerous maneuvers for increased speed, reach, and placement.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...