ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (13)
  • Nature Publishing Group (NPG)  (13)
  • Springer
  • American Geophysical Union (AGU)
Collection
Publisher
Years
  • 1
    Publication Date: 2008-01-04
    Description: Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonsson, Thomas J -- Johnson, Lynnette C -- Lowther, W Todd -- R01 GM072866/GM/NIGMS NIH HHS/ -- R01 GM072866-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 3;451(7174):98-101. doi: 10.1038/nature06415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172504" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites/genetics ; Catalysis ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/genetics/metabolism ; Mutagenesis, Site-Directed ; Oxidation-Reduction ; Oxidoreductases/*chemistry/genetics/*metabolism ; Oxidoreductases Acting on Sulfur Group Donors ; Peroxiredoxins/*chemistry/genetics/*metabolism ; Protein Structure, Quaternary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-29
    Description: Site-specific recognition of DNA in eukaryotic organisms depends on the arrangement of nucleosomes in chromatin. In the yeast Saccharomyces cerevisiae, ISW1a and related chromatin remodelling factors are implicated in establishing the nucleosome repeat during replication and altering nucleosome position to affect gene activity. Here we have solved the crystal structures of S. cerevisiae ISW1a lacking its ATPase domain both alone and with DNA bound at resolutions of 3.25 A and 3.60 A, respectively, and we have visualized two different nucleosome-containing remodelling complexes using cryo-electron microscopy. The composite X-ray and electron microscopy structures combined with site-directed photocrosslinking analyses of these complexes suggest that ISW1a uses a dinucleosome substrate for chromatin remodelling. Results from a remodelling assay corroborate the dinucleosome model. We show how a chromatin remodelling factor could set the spacing between two adjacent nucleosomes acting as a 'protein ruler'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamada, Kazuhiro -- Frouws, Timothy D -- Angst, Brigitte -- Fitzgerald, Daniel J -- DeLuca, Carl -- Schimmele, Kyoko -- Sargent, David F -- Richmond, Timothy J -- England -- Nature. 2011 Apr 28;472(7344):448-53. doi: 10.1038/nature09947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Institute of Molecular Biology and Biophysics, Schafmattstr. 20, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525927" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*chemistry/*metabolism ; Animals ; *Chromatin Assembly and Disassembly ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Nucleosomes/chemistry/genetics/*metabolism ; Protein Conformation ; Saccharomyces cerevisiae/*chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-05
    Description: Arsenate and phosphate are abundant on Earth and have striking similarities: nearly identical pK(a) values, similarly charged oxygen atoms, and thermochemical radii that differ by only 4% (ref. 3). Phosphate is indispensable and arsenate is toxic, but this extensive similarity raises the question whether arsenate may substitute for phosphate in certain niches. However, whether it is used or excluded, discriminating phosphate from arsenate is a paramount challenge. Enzymes that utilize phosphate, for example, have the same binding mode and kinetic parameters as arsenate, and the latter's presence therefore decouples metabolism. Can proteins discriminate between these two anions, and how would they do so? In particular, cellular phosphate uptake systems face a challenge in arsenate-rich environments. Here we describe a molecular mechanism for this process. We examined the periplasmic phosphate-binding proteins (PBPs) of the ABC-type transport system that mediates phosphate uptake into bacterial cells, including two PBPs from the arsenate-rich Mono Lake Halomonas strain GFAJ-1. All PBPs tested are capable of discriminating phosphate over arsenate at least 500-fold. The exception is one of the PBPs of GFAJ-1 that shows roughly 4,500-fold discrimination and its gene is highly expressed under phosphate-limiting conditions. Sub-angstrom-resolution structures of Pseudomonas fluorescens PBP with both arsenate and phosphate show a unique mode of binding that mediates discrimination. An extensive network of dipole-anion interactions, and of repulsive interactions, results in the 4% larger arsenate distorting a unique low-barrier hydrogen bond. These features enable the phosphate transport system to bind phosphate selectively over arsenate (at least 10(3) excess) even in highly arsenate-rich environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elias, Mikael -- Wellner, Alon -- Goldin-Azulay, Korina -- Chabriere, Eric -- Vorholt, Julia A -- Erb, Tobias J -- Tawfik, Dan S -- England -- Nature. 2012 Nov 1;491(7422):134-7. doi: 10.1038/nature11517. Epub 2012 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel. mikael.elias@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23034649" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Arsenates/*chemistry/*metabolism ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Drug Resistance, Bacterial ; Ecosystem ; Escherichia coli/chemistry ; Hydrogen Bonding ; Lakes/microbiology ; Models, Molecular ; Periplasmic Binding Proteins/chemistry/genetics/metabolism ; Phosphate-Binding Proteins/*chemistry/genetics/*metabolism ; Phosphates/*chemistry/*metabolism ; Pseudomonas fluorescens/*chemistry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-18
    Description: A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 A. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunette, T J -- Parmeggiani, Fabio -- Huang, Po-Ssu -- Bhabha, Gira -- Ekiert, Damian C -- Tsutakawa, Susan E -- Hura, Greg L -- Tainer, John A -- Baker, David -- GM105404/GM/NIGMS NIH HHS/ -- K99GM112982/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):580-4. doi: 10.1038/nature16162. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA. ; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California 94158, USA. ; Department of Microbiology and Immunology, UCSF, San Francisco, California 94158, USA. ; Molecular Biophysics &Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA. ; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. ; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675729" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Motifs ; Amino Acid Sequence ; *Bioengineering ; *Computer Simulation ; Crystallography, X-Ray ; Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Stability ; Proteins/*chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-06-12
    Description: Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchillo, Robert M -- Zhang, Houjin -- Blodgett, Joshua A V -- Whitteck, John T -- Li, Gongyong -- Nair, Satish K -- van der Donk, Wilfred A -- Metcalf, William W -- P01 GM077596/GM/NIGMS NIH HHS/ -- P01 GM077596-03/GM/NIGMS NIH HHS/ -- R01 GM059334/GM/NIGMS NIH HHS/ -- R01 GM059334-09/GM/NIGMS NIH HHS/ -- R01 GM59334/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516340" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/*chemistry/*metabolism ; Biocatalysis ; Crystallography, X-Ray ; Dioxygenases/chemistry/genetics/*metabolism ; Escherichia coli ; Formates/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Organophosphonates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-26
    Description: The extent to which evolution is reversible has long fascinated biologists. Most previous work on the reversibility of morphological and life-history evolution has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters. Further, despite theoretical work on the factors that could contribute to irreversibility, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent 'restrictive' mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bridgham, Jamie T -- Ortlund, Eric A -- Thornton, Joseph W -- F32-GM074398/GM/NIGMS NIH HHS/ -- R01 GM081592/GM/NIGMS NIH HHS/ -- R01-GM081592/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 24;461(7263):515-9. doi: 10.1038/nature08249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; Epistasis, Genetic ; *Evolution, Molecular ; Hormones/metabolism ; *Models, Biological ; Models, Molecular ; Mutation/genetics ; Protein Engineering ; Receptors, Glucocorticoid/*chemistry/*genetics/metabolism ; Sequence Alignment ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-20
    Description: Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 A resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the gamma-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the alpha-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dietl, Andreas -- Ferousi, Christina -- Maalcke, Wouter J -- Menzel, Andreas -- de Vries, Simon -- Keltjens, Jan T -- Jetten, Mike S M -- Kartal, Boran -- Barends, Thomas R M -- P41-GM103311/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 19;527(7578):394-7. doi: 10.1038/nature15517. Epub 2015 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. ; Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands. ; Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland. ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands. ; Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent University, Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26479033" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*enzymology ; Catalytic Domain ; Crystallography, X-Ray ; Hydrazines/*metabolism ; Hydroxylamine/metabolism ; Metalloproteins/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/*chemistry/*metabolism ; Nitric Oxide/metabolism ; Protein Multimerization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-10-16
    Description: Structures of riboswitch receptor domains bound to their effector have shown how messenger RNAs recognize diverse small molecules, but mechanistic details linking the structures to the regulation of gene expression remain elusive. To address this, here we solve crystal structures of two different classes of cobalamin (vitamin B(12))-binding riboswitches that include the structural switch of the downstream regulatory domain. These classes share a common cobalamin-binding core, but use distinct peripheral extensions to recognize different B(12) derivatives. In each case, recognition is accomplished through shape complementarity between the RNA and cobalamin, with relatively few hydrogen bonding interactions that typically govern RNA-small molecule recognition. We show that a composite cobalamin-RNA scaffold stabilizes an unusual long-range intramolecular kissing-loop interaction that controls mRNA expression. This is the first, to our knowledge, riboswitch crystal structure detailing how the receptor and regulatory domains communicate in a ligand-dependent fashion to regulate mRNA expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518761/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518761/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, James E Jr -- Reyes, Francis E -- Polaski, Jacob T -- Batey, Robert T -- 1S10RR026516/RR/NCRR NIH HHS/ -- F32 GM095121/GM/NIGMS NIH HHS/ -- F32GM095121/GM/NIGMS NIH HHS/ -- GM073850/GM/NIGMS NIH HHS/ -- R01 GM073850/GM/NIGMS NIH HHS/ -- S10 RR026516/RR/NCRR NIH HHS/ -- England -- Nature. 2012 Dec 6;492(7427):133-7. doi: 10.1038/nature11607. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0596, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064232" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Calorimetry ; Crystallography, X-Ray ; Escherichia coli/genetics ; Gene Expression Regulation/drug effects ; Hydrogen Bonding/drug effects ; Ligands ; Models, Molecular ; Nucleic Acid Conformation/*drug effects ; RNA, Bacterial/genetics ; RNA, Messenger/*chemistry/drug effects/genetics/metabolism ; Riboswitch/*drug effects/genetics ; Thermodynamics ; Vitamin B 12/*chemistry/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-07
    Description: Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correia, Bruno E -- Bates, John T -- Loomis, Rebecca J -- Baneyx, Gretchen -- Carrico, Chris -- Jardine, Joseph G -- Rupert, Peter -- Correnti, Colin -- Kalyuzhniy, Oleksandr -- Vittal, Vinayak -- Connell, Mary J -- Stevens, Eric -- Schroeter, Alexandria -- Chen, Man -- Macpherson, Skye -- Serra, Andreia M -- Adachi, Yumiko -- Holmes, Margaret A -- Li, Yuxing -- Klevit, Rachel E -- Graham, Barney S -- Wyatt, Richard T -- Baker, David -- Strong, Roland K -- Crowe, James E Jr -- Johnson, Philip R -- Schief, William R -- 1R01AI102766-01A1/AI/NIAID NIH HHS/ -- 1UM1AI100663/AI/NIAID NIH HHS/ -- 2T32GM007270/GM/NIGMS NIH HHS/ -- 5R21AI088554/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI094419/AI/NIAID NIH HHS/ -- P30 AI036214/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- P30AI36214/AI/NIAID NIH HHS/ -- R01 AI102766/AI/NIAID NIH HHS/ -- R21 AI088554/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- U54 AI 005714/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):201-6. doi: 10.1038/nature12966. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] PhD Program in Computational Biology, Instituto Gulbenkian Ciencia and Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal [3] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA [2]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA [3] Department of Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Neutralizing/analysis/immunology ; Antibodies, Viral/analysis/immunology ; Antigens, Viral/chemistry/immunology ; Crystallography, X-Ray ; *Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; Macaca mulatta/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Neutralization Tests ; Protein Conformation ; *Protein Stability ; Respiratory Syncytial Virus Vaccines/*chemistry/*immunology ; Respiratory Syncytial Viruses/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-19
    Description: Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral beta-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open beta-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benoit, Roger M -- Frey, Daniel -- Hilbert, Manuel -- Kevenaar, Josta T -- Wieser, Mara M -- Stirnimann, Christian U -- McMillan, David -- Ceska, Tom -- Lebon, Florence -- Jaussi, Rolf -- Steinmetz, Michel O -- Schertler, Gebhard F X -- Hoogenraad, Casper C -- Capitani, Guido -- Kammerer, Richard A -- England -- Nature. 2014 Jan 2;505(7481):108-11. doi: 10.1038/nature12732. Epub 2013 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. ; 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland [2]. ; 1] Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands [2]. ; Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. ; UCB Celltech, UCB Pharma, UCB NewMedicines, Slough SL1 4EN, UK. ; UCB Pharma, UCB NewMedicines, B-1420 Braine-L'Alleud, Belgium. ; 1] Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland [2] Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland. ; Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24240280" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Botulinum Toxins, Type A/*chemistry/*metabolism ; Crystallography, X-Ray ; Endocytosis/drug effects ; HEK293 Cells ; Humans ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Neostriatum/cytology ; Nerve Tissue Proteins/*chemistry/*metabolism ; Neurons/drug effects ; Peptide Fragments/chemistry/pharmacology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...