ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-04-28
    Description: A backbone model of a 10-subunit yeast RNA polymerase II has been derived from x-ray diffraction data extending to 3 angstroms resolution. All 10 subunits exhibit a high degree of identity with the corresponding human proteins, and 9 of the 10 subunits are conserved among the three eukaryotic RNA polymerases I, II, and III. Notable features of the model include a pair of jaws, formed by subunits Rpb1, Rpb5, and Rpb9, that appear to grip DNA downstream of the active center. A clamp on the DNA nearer the active center, formed by Rpb1, Rpb2, and Rpb6, may be locked in the closed position by RNA, accounting for the great stability of transcribing complexes. A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Fu, J -- Gnatt, A L -- Maier-Davis, B -- Thompson, N E -- Burgess, R R -- Edwards, A M -- David, P R -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):640-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784442" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Enzyme Stability ; Escherichia coli/enzymology ; Humans ; *Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; RNA Polymerase II/*chemistry/genetics/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; Thermus/enzymology ; Transcription Factors/chemistry/metabolism ; *Transcription Factors, General ; *Transcription, Genetic ; *Transcriptional Elongation Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-30
    Description: The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179255/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xin -- Bushnell, David A -- Silva, Daniel-Adriano -- Huang, Xuhui -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM049985/GM/NIGMS NIH HHS/ -- R01 AI021144/AI/NIAID NIH HHS/ -- R01 AI021144-27/AI/NIAID NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM049985/GM/NIGMS NIH HHS/ -- R01 GM049985-19/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):633-7. doi: 10.1126/science.1206629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798951" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-14
    Description: The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westover, Kenneth D -- Bushnell, David A -- Kornberg, Roger D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1014-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963331" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Crystallization ; Crystallography, X-Ray ; DNA, Single-Stranded/*chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Promoter Regions, Genetic ; Protein Conformation ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Complementary/*chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Templates, Genetic ; Transcription Factor TFIIB/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-02-14
    Description: The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bushnell, David A -- Westover, Kenneth D -- Davis, Ralph E -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):983-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Hybridization ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA Box ; TATA-Box Binding Protein/chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/*chemistry/metabolism ; Transcription Factors, TFII/chemistry/metabolism ; *Transcription, Genetic ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-20
    Description: Structural information on nanometer-sized gold particles has been limited, due in part to the problem of preparing homogeneous material. Here we report the crystallization and x-ray structure determination of a p-mercaptobenzoic acid (p-MBA)-protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs. The central gold atoms are packed in a Marks decahedron, surrounded by additional layers of gold atoms in unanticipated geometries. The p-MBAs interact not only with the gold but also with one another, forming a rigid surface layer. The particles are chiral, with the two enantiomers alternating in the crystal lattice. The discrete nature of the particle may be explained by the closing of a 58-electron shell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jadzinsky, Pablo D -- Calero, Guillermo -- Ackerson, Christopher J -- Bushnell, David A -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947577" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoates/*chemistry ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Gold/*chemistry ; Macromolecular Substances/*chemistry ; Metal Nanoparticles/*chemistry ; Models, Chemical ; Molecular Structure ; Physicochemical Phenomena ; Stereoisomerism ; Sulfhydryl Compounds/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...