ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 6 (1991), S. 173-182 
    ISSN: 1573-1634
    Keywords: Countercurrent flow ; capillarity ; relative permeability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract Two phase countercurrent steady-state flow through permeable media in one dimension is discussed. For steady-state countercurrent flow in water wet porous media, a saturation profile is predicted with the water saturation decreasing in the direction that the water phase is flowing. The de la Cruz and Spanos equations predict that the Muskat relative permeability curves for countercurrent flow will be less than the Muskat relative permeability curves for steady-state cocurrent flow. This result has immediate implications regarding the use of external drive techniques to determine relative permeabilities based on the Buckley-Leverett theory and Muskat's equations. These equations and current experimental evidence involving countercurrent flow indicate that Muskat's equations do not adequately describe the multiphase flow of immiscible fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 32 (1998), S. 187-198 
    ISSN: 1573-1634
    Keywords: diffusion ; dispersion ; miscible ; automaton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A thermodynamic lattice gas (automaton) model is used to simulate dispersion in porous media. Simulations are constructed at two distinctly different scales, the pore scale at which capillary models are constructed and large scale or Darcy scale at which probabilistic collision rules are introduced. Both models allow for macroscopic (pore scale) phase separation. The pore scale models clearly show the effect of pore structure on dispersion. The large scale (mega scale) simulations indicate that when the pressure difference between the displacing phase and displaced phase is properly chosen (representing the average pressure gradient between the phases). The simulation results are consistent with both theoretical predictions and experimental observations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...