ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coral Sr/Ca ratios
  • δ18O
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 3730–3750, doi:10.1002/ggge.20230.
    Description: The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twenty-one laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp-1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is 〈0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1.
    Description: E.C.H. (MARUM Fellowship) and T.F. were supported by the DFG-Research Center/Excellence Cluster ‘‘The Ocean in the Earth System,’’ University of Bremen. HVM was supported by an AINSE Research Fellowship.
    Description: 2014-03-23
    Keywords: Coral Sr/Ca ratios
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 121 (2013):196-213, doi:10.1016/j.gca.2013.07.028.
    Description: The Mg/Ca ratio in foraminiferal calcite is one of the principal proxies used for paleoceanographic temperature reconstructions, but recent core-top sediment observations suggest that salinity may exert a significant secondary control on planktic foraminifers. This study compiles new and published laboratory culture experiment data from the planktic foraminifers Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber, in which salinity was varied but temperature, pH and light were held constant. Combining new data with results from previous culture studies yields a Mg/Ca-sensitivity to salinity of 4.4±2.3%, 4.7±1.2%, and 3.3±1.7% per salinity unit (95% confidence), respectively, for the three foraminifer species studied here. Comparison of these sensitivities with core-top data suggests that the much larger sensitivity (27±4% per salinity unit) derived from Atlantic core-top sediments in previous studies is not a direct effect of salinity. Rather, we suggest that the dissolution correction often applied to Mg/Ca data can lead to significant overestimation of temperatures. We are able to reconcile culture calibrations with core-top observations by combining evidence for seasonal occurrence and latitude-specific habitat depth preferences with corresponding variations in physico-chemical environmental parameters. Although both Mg/Ca and δ18O yield temperature estimates that fall within the bounds of hydrographic observations, discrepancies between the two proxies highlight unresolved challenges with the use of paired Mg/Ca and δ18O analyses to reconstruct paleo-salinity patterns across ocean basins. The first step towards resolving these challenges requires a better spatially and seasonally resolved δ18Osw archive than is currently available. Nonetheless, site-specific reconstructions of salinity change through time may be valid.
    Description: This research was supported by NSF OCE 07-51764 (BH), OCE 05-50703 (HJS), ARC DP 8800010 (SE), OCE 07-52649 (PdeM), ERC 2010-NEWLOG ADG-267931 (HE) and a Columbia Climate Center Grant (KA and BH).
    Keywords: Sea surface temperatures ; Mg/Ca ; δ18O ; Planktic foraminifers ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...