ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (1)
  • Cool skin  (1)
  • American Geophysical Union  (2)
  • Copernicus
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.
    Description: The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.
    Description: This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226.
    Keywords: Air-sea CO2 flux ; Warm layer ; Cool skin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...