ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Key words: DCMU ; Diuron ; Conformational analysis ; Solvent effect ; Ab initio calculation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. In the present work, the conformational equilibrium for the herbicide diuron (DCMU) has been investigated using high level ab initio calculations. The solvent effect was included through two different continuum models: (1) the real cavity IPCM method and (2) the standard dipole Onsager model SCRF. The effect due to solute-solvent hydrogen-bond interactions was analyzed considering a hybrid discreet-continuum model. At the Hartree-Fock level, the gas phase results showed that only the trans forms (A and B) are present in the equilibrium mixture, with the relative concentrations found to be 33% (A) and 67% (B) (HF/6-311+G**//6-31G**). When the electronic correlation effect is included (MP2/6-31G*//HF/6-31G*), a relative stabilization of the cis forms was observed, with the conformational distribution calculated as 38% (A), 50% (B), 6% (C) and 6% (D). The trans conformations were found to be completely planar, which has been considered to be a prerequisite for the herbicide binding. In water solution, the trans conformation A should be the most abundant conformer, the IPCM and SCRF values being ca. 100% and ca. 85% respectively. The IPCM calculations with the isodensity level set to 0.0005 present a conformational distribution close to that obtained from the hybrid model [92% (A) and 8% (B)], which has been considered our best solvent approach. Regarding the biological action of urea-type herbicides, the results presented here are important, because some QSAR studies have suggested that the partition coefficient is related to the herbicide activity, so the conformational equilibrium may play a role in the biological action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Structural chemistry 8 (1997), S. 95-107 
    ISSN: 1572-9001
    Keywords: Conformational analysis ; antimalarial ; quinine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Quinine, an active antimalarial compound, is one of the most abundant constituents extracted from the bark ofCinchona trees. The activity differences among structurally related molecules appear to depend on the absolute stereochemistry of some functional groups, a result that has stimulated a detailed conformational analysis of these molecules of biological interest. In the present study the potential energy surface (PES) for the antimalarial agent quinine (C20H24O2N2) has been comprehensively investigated using the molecular mechanics (MM) and quantum mechanical semiem-pirical AM1 and PM3 methods. Six distinct minimum-energy structures are located on the multidimensional PES and also characterized as true minima through harmonic frequency analysis. The relative stabilities and thermodynamic properties are reported. The coexistence of different conformers is discussed for the first time in the literature based on the calculated transition-state (TS) structures connecting the six minima located on the PES for the quinine molecule. The theoretical results reported in the present study are in agreement with the experimental proposal, based on NMR data, that there are two possible forms for the quinine molecule in solution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...