ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-08-10
    Description: Intracellular signaling networks receive and process information to control cellular machines. The mitogen-activated protein kinase (MAPK) 1,2/protein kinase C (PKC) system is one such network that regulates many cellular machines, including the cell cycle machinery and autocrine/paracrine factor synthesizing machinery. We used a combination of computational analysis and experiments in mouse NIH-3T3 fibroblasts to understand the design principles of this controller network. We find that the growth factor-stimulated signaling network containing MAPK 1, 2/PKC can operate with one (monostable) or two (bistable) stable states. At low concentrations of MAPK phosphatase, the system exhibits bistable behavior, such that brief stimulus results in sustained MAPK activation. The MAPK-induced increase in the amounts of MAPK phosphatase eliminates the prolonged response capability and moves the network to a monostable state, in which it behaves as a proportional response system responding acutely to stimulus. Thus, the MAPK 1, 2/PKC controller network is flexibly designed, and MAPK phosphatase may be critical for this flexible response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhalla, Upinder S -- Ram, Prahlad T -- Iyengar, Ravi -- CA-79134/CA/NCI NIH HHS/ -- CA-81050/CA/NCI NIH HHS/ -- GM-54508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1018-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biological Sciences, Bangalore 560065 India. bhalla@ncbs.res.in〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169734" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adaptation, Physiological ; Animals ; *Cell Cycle Proteins ; Computer Simulation ; Dose-Response Relationship, Drug ; Dual Specificity Phosphatase 1 ; *Feedback, Physiological ; Immediate-Early Proteins/*metabolism ; *MAP Kinase Signaling System ; Mathematics ; Mice ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; Phospholipases A/antagonists & inhibitors/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-04-02
    Description: Biological signaling pathways interact with one another to form complex networks. Complexity arises from the large number of components, many with isoforms that have partially overlapping functions; from the connections among components; and from the spatial relationship between components. The origins of the complex behavior of signaling networks and analytical approaches to deal with the emergent complexity are discussed here.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773983/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773983/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weng, G -- Bhalla, U S -- Iyengar, R -- GM-54508/GM/NIGMS NIH HHS/ -- R01 GM054508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):92-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Compartmentation ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Computer Simulation ; Cytoskeleton/physiology ; Databases, Factual ; GTP-Binding Proteins/metabolism ; Genes ; Humans ; *Models, Biological ; Neural Networks (Computer) ; Neurons/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well-defined input thresholds for transition between states and prolonged signal output, and signal modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for "learned behavior" of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhalla, U S -- Iyengar, R -- GM-54508/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):381-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888852" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/metabolism ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle Proteins ; Computer Simulation ; Cyclic AMP/metabolism ; Dual Specificity Phosphatase 1 ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Feedback ; Immediate-Early Proteins/metabolism ; Isoenzymes/metabolism ; Kinetics ; Long-Term Potentiation ; Memory ; *Models, Biological ; Neurons/metabolism ; Phospholipase C gamma ; *Phosphoprotein Phosphatases ; Phosphorylation ; Protein Kinase C/metabolism ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Second Messenger Systems ; *Signal Transduction ; Synapses/metabolism ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-09-27
    Description: Tumor necrosis factor (TNF) is a key regulator of inflammatory responses and has been implicated in many pathological conditions. We used structure-based design to engineer variant TNF proteins that rapidly form heterotrimers with native TNF to give complexes that neither bind to nor stimulate signaling through TNF receptors. Thus, TNF is inactivated by sequestration. Dominant-negative TNFs represent a possible approach to anti-inflammatory biotherapeutics, and experiments in animal models show that the strategy can attenuate TNF-mediated pathology. Similar rational design could be used to engineer inhibitors of additional TNF superfamily cytokines as well as other multimeric ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steed, Paul M -- Tansey, Malu G -- Zalevsky, Jonathan -- Zhukovsky, Eugene A -- Desjarlais, John R -- Szymkowski, David E -- Abbott, Christina -- Carmichael, David -- Chan, Cheryl -- Cherry, Lisa -- Cheung, Peter -- Chirino, Arthur J -- Chung, Hyo H -- Doberstein, Stephen K -- Eivazi, Araz -- Filikov, Anton V -- Gao, Sarah X -- Hubert, Rene S -- Hwang, Marian -- Hyun, Linus -- Kashi, Sandhya -- Kim, Alice -- Kim, Esther -- Kung, James -- Martinez, Sabrina P -- Muchhal, Umesh S -- Nguyen, Duc-Hanh T -- O'Brien, Christopher -- O'Keefe, Donald -- Singer, Karen -- Vafa, Omid -- Vielmetter, Jost -- Yoder, Sean C -- Dahiyat, Bassil I -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Xencor, 111 West Lemon Avenue, Monrovia, CA 91016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512626" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD/metabolism ; Apoptosis ; Arthritis, Experimental/drug therapy ; Biopolymers ; Caspases/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Computer Simulation ; Disease Progression ; Enzyme-Linked Immunosorbent Assay ; Female ; Galactosamine/pharmacology ; HeLa Cells ; Humans ; Liver/drug effects ; NF-kappa B/metabolism ; Point Mutation ; *Protein Engineering ; Rats ; Receptors, Tumor Necrosis Factor/metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; *Signal Transduction ; Transcription Factor RelA ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/*antagonists & ; inhibitors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-11
    Description: Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roh-Johnson, Minna -- Shemer, Gidi -- Higgins, Christopher D -- McClellan, Joseph H -- Werts, Adam D -- Tulu, U Serdar -- Gao, Liang -- Betzig, Eric -- Kiehart, Daniel P -- Goldstein, Bob -- R01 GM033830/GM/NIGMS NIH HHS/ -- R01 GM083071/GM/NIGMS NIH HHS/ -- R01 GM083071-01A1/GM/NIGMS NIH HHS/ -- R01 GM083071-02/GM/NIGMS NIH HHS/ -- R01 GM083071-02S1/GM/NIGMS NIH HHS/ -- R01 GM083071-03/GM/NIGMS NIH HHS/ -- R01 GM083071-04/GM/NIGMS NIH HHS/ -- R01 GM33830/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1232-5. doi: 10.1126/science.1217869. Epub 2012 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323741" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/chemistry/*physiology ; Animals ; Caenorhabditis elegans/*cytology/*embryology ; Cell Membrane/physiology/ultrastructure ; *Cell Shape ; Computer Simulation ; Cytoskeleton/physiology/ultrastructure ; Drosophila melanogaster/*cytology/*embryology ; Embryo, Nonmammalian/cytology/physiology ; Fluorescence Recovery After Photobleaching ; *Gastrulation ; Intercellular Junctions/physiology/ultrastructure ; Mechanical Phenomena ; Models, Biological ; Morphogenesis ; Myosins/chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...