ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-29
    Description: Identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets. Among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available at https://code.google.com/p/seqtu/ . We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-21
    Description: Assigning cancer patients to the most effective treatments requires an understanding of the molecular basis of their disease. While DNA-based molecular profiling approaches have flourished over the past several years to transform our understanding of driver pathways across a broad range of tumors, a systematic characterization of key driver pathways based on RNA data has not been undertaken. Here we introduce a new approach for predicting the status of driver cancer pathways based on signature functions derived from RNA sequencing data. To identify the driver cancer pathways of interest, we mined DNA variant data from TCGA and nominated driver alterations in seven major cancer pathways in breast, ovarian and colon cancer tumors. The activation status of these driver pathways were then characterized using RNA sequencing data by constructing classification signature functions in training datasets and then testing the accuracy of the signatures in test datasets. The signature functions differentiate well tumors with nominated pathway activation from tumors with no signs of activation: average AUC equals to 0.83. Our results confirm that driver genomic alterations are distinctively displayed at the transcriptional level and that the transcriptional signatures can generally provide an alternative to DNA sequencing methods in detecting specific driver pathways.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-07
    Description: A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-10
    Description: Viral sequence classification has wide applications in clinical, epidemiological, structural and functional categorization studies. Most existing approaches rely on an initial alignment step followed by classification based on phylogenetic or statistical algorithms. Here we present an ultrafast alignment-free subtyping tool for human immunodeficiency virus type one (HIV-1) adapted from Prediction by Partial Matching compression. This tool, named COMET, was compared to the widely used phylogeny-based REGA and SCUEAL tools using synthetic and clinical HIV data sets (1 090 698 and 10 625 sequences, respectively). COMET's sensitivity and specificity were comparable to or higher than the two other subtyping tools on both data sets for known subtypes. COMET also excelled in detecting and identifying new recombinant forms, a frequent feature of the HIV epidemic. Runtime comparisons showed that COMET was almost as fast as USEARCH. This study demonstrates the advantages of alignment-free classification of viral sequences, which feature high rates of variation, recombination and insertions/deletions. COMET is free to use via an online interface.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-17
    Description: Viral recombination is a key evolutionary mechanism, aiding escape from host immunity, contributing to changes in tropism and possibly assisting transmission across species barriers. The ability to determine whether recombination has occurred and to locate associated specific recombination junctions is thus of major importance in understanding emerging diseases and pathogenesis. This paper describes a method for determining recombinant mosaics (and their proportions) originating from two parent genomes, using high-throughput sequence data. The method involves setting the problem geometrically and the use of appropriately constrained quadratic programming. Recombinants of the honeybee deformed wing virus and the Varroa destructor virus-1 are inferred to illustrate the method from both siRNAs and reads sampling the viral genome population (cDNA library); our results are confirmed experimentally. Matlab software (MosaicSolver) is available.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-21
    Description: Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory ‘grammar’ to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-06
    Description: The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA's research network, opportunities still exist to implement novel methods, thereby elucidating new biological pathways and diagnostic markers. However, mining the TCGA data presents several bioinformatics challenges, such as data retrieval and integration with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to address these challenges and offer bioinformatics solutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incorporated methodologies developed in previous TCGA marker studies and in our own group. Using four different TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illustrate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-06
    Description: Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3' bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleSplice, which uses a statistical model to detect genes whose isoform usage shows biological variation significantly exceeding technical noise in a population of single cells. Importantly, SingleSplice is tailored to the unique demands of single cell analysis, detecting isoform usage differences without attempting to infer expression levels for full-length transcripts. Using data from spike-in transcripts, we found that our approach detects variation in isoform usage among single cells with high sensitivity and specificity. We also applied SingleSplice to data from mouse embryonic stem cells and discovered a set of genes that show significant biological variation in isoform usage across the set of cells. A subset of these isoform differences are linked to cell cycle stage, suggesting a novel connection between alternative splicing and the cell cycle.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-29
    Description: Most mammalian genes have mRNA variants due to alternative promoter usage, alternative splicing, and alternative cleavage and polyadenylation. Expression of alternative RNA isoforms has been found to be associated with tumorigenesis, proliferation and differentiation. Detection of condition-associated transcription variation requires association methods. Traditional association methods such as Pearson chi-square test and Fisher Exact test are single test methods and do not work on count data with replicates. Although the Cochran Mantel Haenszel (CMH) approach can handle replicated count data, our simulations showed that multiple CMH tests still had very low power. To identify condition-associated variation of transcription, we here proposed a ranking analysis of chi-squares (RAX2) for large-scale association analysis. RAX2 is a nonparametric method and has accurate and conservative estimation of FDR profile. Simulations demonstrated that RAX2 performs well in finding condition-associated transcription variants. We applied RAX2 to primary T-cell transcriptomic data and identified 1610 (16.3%) tags associated in transcription with immune stimulation at FDR 〈 0.05. Most of these tags also had differential expression. Analysis of two and three tags within genes revealed that under immune stimulation short RNA isoforms were preferably used.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-03
    Description: We present SWAN, a statistical framework for robust detection of genomic structural variants in next-generation sequencing data and an analysis of mid-range size insertion and deletions (〈10 Kb) for whole genome analysis and DNA mixtures. To identify these mid-range size events, SWAN collectively uses information from read-pair, read-depth and one end mapped reads through statistical likelihoods based on Poisson field models. SWAN also uses soft-clip/split read remapping to supplement the likelihood analysis and determine variant boundaries. The accuracy of SWAN is demonstrated by in silico spike-ins and by identification of known variants in the NA12878 genome. We used SWAN to identify a series of novel set of mid-range insertion/deletion detection that were confirmed by targeted deep re-sequencing. An R package implementation of SWAN is open source and freely available.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...