ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 12 (1977), S. 215-223 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The invariance question int he CNDO and INDO levels of approximation is discussed with particular reference to one-center and two-center two-electron integrals and rotation of molecule-fixed coordinate axes. It is shown that asufficient condition for rotational invariance for the cone-center two-electron integrals is Jμμ = Jμμ, +2Kμμ, where J and K are the Coulomb and exchange integrals over orbitals μ μ′ with the same azimuthal quantum number. CNDO and INDO procedures, which explicitly employ Löwdin's orthogonalized basis set of atomic ortbitals (OAO) and differentiate between s-, p-, and d-orbitals on an atom in calculating various integrals, have also been examined in relation to the rotational invariance requirement. An expression which satisfies rotational invariance for two-electron Coulomb repulsion integrals over OAOS is also given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 6 (1972), S. 819-841 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The spin density distribution in a few hydrocarbon radicals has been calculated using orthogonalized atomic orbitals in the Unrestricted Hartree-Fock formalism of Amos and Snyder and including certain more important two-electron hybrid and exchange integrals and all the core-resonance integrals. Our calculated spin densities for the cation and anion radicals of alternant hydrocarbons, which are now different due to the breakdown of the pairing theorem, are, in general, of the right relative order so that even the simple McConnell type of relation can account partly for the observed differences in the proton splittings between cations and anions. The proton splittings for position 2 of naphthalene and anthracene radical ions are correctly predicted, thus clearing up the well-known cation-anion anomaly for this position. Comparative calculations have been made to show that the spin density results are worsened with the neglect of the integrals of the type mentioned before. An empirical analysis correlating the observed 13C splittings and the spin density results over a non-orthogonal basis set shows that the available 13C splittings in alternant hydrocarbon radical ions can be explained with a set of sigma-pi parameters which are consistent with the theory. It is shown that even though the spin densities in cations and anions may be different, these can lead to similar 13C splittings.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A modified INDO procedure has been used to calculate the proton hyperfine splittings in benzyl and the isoelectronic anilino, phenoxy and 2-azabenzyl as well as 2- and 3-thenyl radicals. The present procedure differentiates between s-, p- and d-orbitals on an atom in estimating various integrals involving them, satisfies the rotational invariance requirements and employs an orthogonalized basis set of atomic orbitals for obtaining core-Hamiltonian matrix elements. The calculations based on using the exponents which depend only on the type of orbital and the nature of atom fail to provide correct relative order of ortho and para proton splittings in benzyl as well as anilino, phenoxy and 2-azabenzyl radicals. On the other hand, use of the exponents which are modified according to the charge densities in various orbitals leads to a high absolute value for para proton splitting compared to that for ortho proton splitting which in case of all these radicals is in agreement with experiment. A spin density calculation on benzyl, anilino and phenoxy radicals considering the variation of one-center one-electron and one-center two-electron integrals for different protons with their charges is found to yield further improvement in the relative order of ortho and para proton splittings in all these radicals. In 2- and 3-thenyl radicals the role of 3d-orbitals on sulfur has also been examined. To our knowledge, no unrestricted INDO calculations including 3d-orbitals on sulfur have been reported in the literature so far.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...