ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 1 (1980), S. 373-385 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Ab initio calculations with full geometry optimization have been carried out on the planar cCc, cTc, tTc, tCt, tTt, and cCt conformers of β-hydroxyacrolein using the 4-21G basis set, and on the cCc and cCt conformers using the 4-31G basis set. The hydrogen-bonded cCc conformer is the most stable and the cCt conformer the least stable, with the other conformers following the above sequence. β-Hydroxy substitution has scarcely any influence on the geometry of the trans-acrolein structure, whereas the geometry of the cis-acrolein structure shows significant changes which depend on whether the O—H group is cis or trans with respect to the CHO group about the C=C bond. The ΔET values for cis → trans isomerization about the C—C bond in cCt and cTc support the hypothesis that these changes in geometry are the result of a destabilizing interaction in cCt and a stabilizing interaction in cTc. The geometry of the hydrogen-bonded structure cCc sets it apart from all the other conformers: it has by far the longest C=C, the longest C=O, the longest O—H, the shortest C—C, and the shortest C—O. Its formation from cCt involves a lengthening of C=C, C=O, and O—H and a shortening of C—C and C—O, indicating a delocalization of charge within the ring. 4-21G calculations have also been made for a distorted cCt structure that has the same bond lengths and angles as the equilibrium cCc structure, and the distortion energy, cCt (equm. geom.) → cCt (distorted geom.), is found to be +13.1 kJ mole-1. Taking the energy of this distorted cCt structure as the baseline, the hydrogen-bonding energy in cCc is found to be  - 80.3 kJ mole-1.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...