ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (3)
  • 2005-2009
  • 1990-1994  (3)
  • 1992  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 691-698 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Both ab initio and semiempirical electronic structure calculations are used to investigate the molecular and electronic structures and eneregetic stabilities of an unusual bridged compound with the general formula [Y—SiH3—X—SiH3—Y]-, with Y = H or F and X = H, CH3, NH2, OH, F, or Cl. Most of these bridged anions are quite stable relative to YSiH3 + XSiH3Y-, and the stability is predicted to increase considerably when Y = H is replaced with Y = F.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 768-771 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Finite-difference Poisson-Boltzmann (FDPB) methods allow a fast and accurate calculations of the reaction field (charge-solvent) energies for molecular systems. Unfortunately, the energy in the FDPB calculations includes the self-energies and the finite-difference approximation to the Coulombic energies as well as the reaction field energy. A second finite-difference calculation, in a uniform dielectric, is therefore necesssary to eliminate these contributions. In this article we describe a rapid and accurate method to calculate the self energy and finite-difference Coulombic energies in a uniform dielectric thus eliminating the need for a second finite-difference calculation. The computational savings for this method range from a factor of 4 for a typical protein to a factor of 103 for small molecules. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 1114-1118 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The Poisson-Boltzmann equation can be used to calculate the electrostatic potential field of a molecule surrounded by a solvent containing mobile ions. The Poisson-Boltzmann equation is a non-linear partial differential equation. Finite-difference methods of solving this equation have been restricted to the linearized form of the equation or a finite number of non-linear terms. Here we introduce a method based on a variational formulation of the electrostatic potential and standard multi-dimensional maximization methods that can be used to solve the full non-linear equation. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...