ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-09-15
    Description: Gene targeting via homologous recombination-mediated disruption in murine embryonic stem (ES) cells has been described for a number of different genes expressed in these cells; it has not been reported for any nonexpressed genes. Pluripotent stem cell lines were isolated with homologously recombined insertions at three different loci: c-fos, which is expressed at a low level in ES cells, and two genes, adipsin and adipocyte P2 (aP2), which are transcribed specifically in adipose cells and are not expressed at detectable levels in ES cells. The frequencies at which homologous recombination events occurred did not correlate with levels of expression of the targeted genes, but did occur at rates comparable to those previously reported for genes that are actively expressed in ES cells. Injection of successfully targeted cells into mouse blastocysts resulted in the formation of chimeric mice. These studies demonstrate the feasibility of altering genes in ES cells that are expressed in a tissue-specific manner in the mouse, in order to study their function at later developmental stages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R S -- Sheng, M -- Greenberg, M E -- Kolodner, R D -- Papaioannou, V E -- Spiegelman, B M -- DK 31405/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 15;245(4923):1234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2506639" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology ; Animals ; Blotting, Northern ; Blotting, Southern ; Carrier Proteins/biosynthesis/*genetics ; Cell Line ; Chimera ; Complement Factor D ; DNA, Recombinant ; DNA-Binding Proteins/biosynthesis/genetics ; Fatty Acid-Binding Proteins ; Fatty Acids/metabolism ; *Gene Expression Regulation ; Genetic Vectors ; Mice ; *Neoplasm Proteins ; *Nerve Tissue Proteins ; Proto-Oncogene Proteins/biosynthesis/*genetics ; Proto-Oncogene Proteins c-fos ; RNA, Messenger/biosynthesis/genetics ; *Recombination, Genetic ; Serine Endopeptidases/*genetics ; Stem Cells/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-07-24
    Description: Adipsin, a serine protease homolog, is synthesized and secreted by adipose cells and is found in the bloodstream. The expression of adipsin messenger RNA (mRNA) and protein was analyzed in rodents during metabolic perturbations and in several experimental models of obesity. Adipsin mRNA abundance is increased in adipose tissue during fasting in normal rats and in diabetes due to streptozotocin-induced insulin deficiency. Adipsin mRNA abundance decreased during the continuous infusion of glucose, which induces a hyperglycemic, hyperinsulinemic state that is accompanied by an increased adipose mass; it is suppressed (greater than 100-fold) in two strains of genetically obese mice (db/db and ob/ob), compared to their congenic counterparts, and is also reduced when obesity is induced chemically by injection of monosodium glutamate into newborn mice. Circulating adipsin protein is decreased in these animal models of obesity, as determined by immunoblotting with antisera to adipsin. Little change in adipsin expression is observed in a model of obesity obtained by pure overfeeding of normal rats (cafeteria model). These data suggest a possible role for adipsin in the above-mentioned disordered metabolic states, and raise the possibility that adipsin expression may be used to distinguish obesities that arise from certain genetic or metabolic defects from those that result from pure overfeeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flier, J S -- Cook, K S -- Usher, P -- Spiegelman, B M -- AM28082/AM/NIADDK NIH HHS/ -- AM31405/AM/NIADDK NIH HHS/ -- DK34605/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1987 Jul 24;237(4813):405-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3299706" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/enzymology ; Animals ; Antigen-Antibody Complex ; Complement Factor D ; Endopeptidases/*genetics/metabolism ; Immune Sera ; Mice ; Mice, Obese ; Obesity/*enzymology/genetics ; RNA, Messenger/genetics ; Reference Values ; *Serine Endopeptidases ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-07-24
    Description: Adipsin is a serine protease homolog whose primary structure was predicted from the nucleotide sequence of a differentiation-dependent adipocyte messenger RNA. Immunoblots probed with antisera to synthetic peptides identify two forms of adipsin that are synthesized and secreted by 3T3 adipocytes. These proteins of 44 and 37 kilodaltons are converted to 25.5 kilodaltons by enzymatic deglycosylation. Although adipsin is principally synthesized in adipose tissue, it is also produced by sciatic nerve and is found in the bloodstream. Because of the apparent restriction of adipsin synthesis to tissues highly active in lipid metabolism, its presence in serum, and its modulation in altered metabolic states, this molecule may play a previously unrecognized role in systemic lipid metabolism or energy balance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, K S -- Min, H Y -- Johnson, D -- Chaplinsky, R J -- Flier, J S -- Hunt, C R -- Spiegelman, B M -- AM07230/AM/NIADDK NIH HHS/ -- AM31405/AM/NIADDK NIH HHS/ -- DK34605/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1987 Jul 24;237(4813):402-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3299705" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*enzymology ; Animals ; Cells, Cultured ; Complement Factor D ; Endopeptidases/blood/genetics/*secretion ; Male ; Mice ; Molecular Weight ; Organ Culture Techniques ; RNA, Messenger/genetics ; Sciatic Nerve/*enzymology ; *Serine Endopeptidases ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...