ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 27 (1999), S. 42-47 
    ISSN: 1573-9686
    Keywords: GIS ; Digital image processing ; Intravital microscopy ; Microcirculation ; Ionizing radiation ; Physiome Project
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract An automated system (ANET) has been developed to construct interactive maps of microvascular networks, calculate blood flow parameters, and simulate microvascular network blood flow using the geographic information systems (GIS) technology. ANET enables us to automatically collect and display topological, structural, and functional parameters and simulate blood flow in microvascular networks. The user-definable programming interface was used for the manipulation of drawings and data. Visual enhancement techniques such as color can be used to display useful information within a network. In ANET the network map becomes a graphical interface through which network information is stored and retrieved and simulations of microvascular network blood flow are carried out. We have used ANET to study the effects of ionizing radiation on normal tissue microvascular networks. Our results indicate that while vessel diameters significantly increased with age in control animals they decreased in irradiated animals. The tortuosity of irradiated vessels (16.3 ± 1.1 mean±standard error of the mean) was significantly different from control vessels (10.0 ± 1.3) only at 7 days postirradiation. Average red blood cell transit time was significantly different between control (1.6 ± 0.6 s) and irradiated (10.7 ± 5.7 s) microvascular networks at 30 days postirradiation. ANET provides an effective tool for handling the large volume of complex data that is usually obtained in microvascular network studies and for simulating blood flow in microvascular networks. © 1999 Biomedical Engineering Society. PAC99: 8764-t, 8719Tt, 0705Pj, 8750Gi
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 9 (2017): 659-676, doi:10.1093/gbe/evx023.
    Description: Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
    Description: This work was primarily supported by a grant from the National Science Foundation (collaborative research grants DEB-1265282, DEB-1120512, DEB-1120013, DEB-1120263, DEB-1120333, DEB-1120398 to J.K.C., D.L.C., M.E.H., S.I.K., M.F.O., J.R.S., W.W., and A.W.). Further support was provided by the National Institute of Environmental Health Sciences (1R01ES021934-01 to A.W., P42ES7373 to T.H.H., P42ES007381 to M.E.H., and R01ES019324 to J.R.S.), the National Institute of General Medical Sciences (P20GM103423 and P20GM104318 to B.L.K.), and the National Science Foundation (DBI-0640462 and XSEDE-MCB100147 to D.G.).
    Keywords: Population genomics ; Genome sequence ; Comparative genomics ; Adaptation ; Genetic diversity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...