ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coastal flows  (4)
  • American Meteorological Society  (4)
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 748–763, doi:10.1175/JPO-D-11-086.1.
    Description: Isohaline coordinate analysis is used to compare the exchange flow in two contrasting estuaries, the long (with respect to tidal excursion) Hudson River and the short Merrimack River, using validated numerical models. The isohaline analysis averages fluxes in salinity space rather than in physical space, yielding the isohaline exchange flow that incorporates both subtidal and tidal fluxes and precisely satisfies the Knudsen relation. The isohaline analysis can be consistently applied to both subtidally and tidally dominated estuaries. In the Hudson, the isohaline exchange flow is similar to results from the Eulerian analysis, and the conventional estuarine theory can be used to quantify the salt transport based on scaling with the baroclinic pressure gradient. In the Merrimack, the isohaline exchange flow is much larger than the Eulerian quantity, indicating the dominance of tidal salt flux. The exchange flow does not scale with the baroclinic pressure gradient but rather with tidal volume flux. This tidal exchange is driven by tidal pumping due to the jet–sink flow at the mouth constriction, leading to a linear dependence of exchange flow on tidal volume flux. Finally, a tidal conversion parameter Qin/Qprism, measuring the fraction of tidal inflow Qprism that is converted into net exchange Qin, is proposed to characterize the exchange processes among different systems. It is found that the length scale ratio between tidal excursion and salinity intrusion provides a characteristic to distinguish estuarine regimes.
    Description: SNC is supported by a WHOI postdoctoral scholarship, a NSF Grant OCE-0926427, and a Taiwan National Science Council Grant NSC 100- 2199-M-002-028.WRGis supported byNSFGrantOCE- 0926427. JAL is supported by NSF Grant OCE-0452054.
    Description: 2012-11-01
    Keywords: Coastal flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...