ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate warming  (1)
  • Course of study: MSc Biological Oceanography
Collection
Keywords
Years
  • 1
    Publication Date: 2023-02-08
    Description: We use observations from novel biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling program to estimate annual net community production (ANCP; associated with carbon export) from the seasonal drawdown of mesopelagic oxygen and surface nitrate in the Southern Ocean. Our estimates agree with previous observations in showing an increase in ANCP in the vicinity of the polar front (∼3 mol C m−2 y−1), compared to lower rates in the subtropical zone (≤ 1 mol C m−2 y−1) and the seasonal ice zone (〈2 mol C m−2 y−1). Paradoxically, the increase in ANCP south of the subtropical front is associated with elevated surface nitrate and silicate concentrations, but decreasing surface iron. We hypothesize that iron limitation promotes silicification in diatoms, which is evidenced by the low silicate to nitrate ratio of surface waters around the Antarctic polar front. High diatom silicification increases the ballasting effect of particulate organic carbon and overall ANCP in this region. A model-based assessment of our methods shows a good agreement between ANCP estimates based on oxygen and nitrate drawdown and the modeled downward organic carbon flux at 100 m. This agreement supports the presumption that net biological consumption is the dominant process affecting the drawdown of these chemical tracers and that, given sufficient data, ANCP can be inferred from observations of oxygen and/or nitrate drawdown in the Southern Ocean.
    Keywords: Course of study: MSc Biological Oceanography
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB3003, doi:10.1029/2003GB002134.
    Description: We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give a global increase in primary production of 0.7% at the low end to 8.1% at the high end, with very large regional differences. The main cause of both the response to warming and the variation between algorithms is the temperature sensitivity of the primary production algorithms. We also show results for the period between the industrial revolution and 2050 and 2090.
    Description: J. L. Sarmiento and R. Slater were supported by the NOAA Office of Global Programs grant NA56GP0439 to the Carbon Modeling Consortium for model development and by NSF grant OCE00973166 for model and observational interpretations as part of the JGOFS Synthesis and Modeling Project. R. Barber was supported by NSF grant OCE 0136270 as part of the JGOFS Synthesis and Modeling Project. S. Doney and J. Kleypas wish to thank the Community Climate System Model science team and the Climate Simulation Laboratory at NCAR and acknowledge support from NOAA-OGP grant NOAA-NA96GP0360S. Spall is funded through the UK Department for Environment, Food and Rural Affairs contract PECD 7/12/37.
    Keywords: Climate warming ; Ocean biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...