ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Whitmore, L., Shiller, A., Horner, T., Xiang, Y., Auro, M., Bauch, D., Dehairs, F., Lam, P., Li, J., Maldonado, M., Mears, C., Newton, R., Pasqualini, A., Planquette, H., Rember, R., & Thomas, H. Strong margin influence on the Arctic Ocean Barium Cycle revealed by pan‐Arctic synthesis. Journal of Geophysical Research: Oceans, 127(4), (2022): e2021JC017417, https://doi.org/10.1029/2021jc017417.
    Beschreibung: Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation. But, what controls the distribution of barium (Ba) in the oceans? Here, we investigated the Arctic Ocean Ba cycle through a one-of-a-kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1 on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean-derived waters and Baffin Bay-derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.
    Beschreibung: This research was supported by the National Science Foundation [OCE-1434312 (AMS), OCE-1436666 (RN), OCE-1535854 (PL), OCE-1736949, OCE-2023456 (TJH), and OCE-1829563 (R. Anderson for open access support)], Natural Sciences and Engineering Research Council of Canada (NSERC)-Climate Change and Atmospheric Research (CCAR) Program (MTM), and LEFE-CYBER EXPATE (HP). HT acknowledges support by the Canadian GEOTRACES via NSERC-CCAR and the German Academic Exchange Service (DAAD): MOPGA-GRI (Make Our Planet Great Again—Research Initiative) sponsored by BMBF (Federal German Ministry of Education and Research; Grant No. 57429828).
    Schlagwort(e): GEOTRACES ; Barium isotopes ; Geochemical cycles ; Climate ; Continental shelves
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Biogeochemistry 32 (1996), S. 175-194 
    ISSN: 1573-515X
    Schlagwort(e): acid mitigation ; exchangeable chemistry ; soil acidity ; soil chemistry ; watershed liming
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Notizen: Abstract The effects of watershed liming on the exchange complex of a forest soil were investigated at Woods Lake, in the west-central Adirondack Park, New York. Attempts to neutralize lake acidity via direct application of calcite during the 1980"s were short-lived due to a short hydraulic retention time. The Experimental Watershed Liming Study (EWLS) was initiated to investigate watershed base addition as a potentially more long-term strategy for mitigation of lake acidity. In this paper we discuss the changes in the exchangeable soil complex which occurred in response to the calcite addition and attempt a mass balance for calcite applied to the watershed. An extensive sampling program was initiated for the watershed study. Soil samples were collected from pits prior to and in the two years following treatment to evaluate changes in soil chemistry. Calcite addition significantly altered the exchange complex in the organic horizon. Increases in pH caused deprotonation of soil organic matter and increases in cation exchange capacity, providing additional exchange sites for the retention of added calcium. Exchangeable acidity decreased to very low values, allowing the base saturation of upper organic horizons to increase to nearly 100 percent. Post-treatment sampling found that approximately 48 percent of the calcite remained undissolved in the soil"s Oe horizon two years later. Dissolution of the calcite was affected by field moisture conditions, with greater dissolution in wetter areas of the watershed. Mass balances calculated for calcium applied to the watershed suggest that only 4 percent of the calcium was removed through the lake outlet. Approximately 96 percent of the calcium applied remained within the watershed; as undissolved calcite, on soil exchange sites or stored in the vegetation, groundwater or surface waters of the watershed.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...