ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-02-09
    Description: Induced pluripotent stem (iPS) cells can be obtained by the introduction of defined factors into somatic cells. The combination of Oct4 (also known as Pou5f1), Sox2 and Klf4 (which we term OSK) constitutes the minimal requirement for generating iPS cells from mouse embryonic fibroblasts. These cells are thought to resemble embryonic stem cells (ESCs) on the basis of global gene expression analyses; however, few studies have tested the ability and efficiency of iPS cells to contribute to chimaerism, colonization of germ tissues, and most importantly, germ-line transmission and live birth from iPS cells produced by tetraploid complementation. Using genomic analyses of ESC genes that have roles in pluripotency and fusion-mediated somatic cell reprogramming, here we show that the transcription factor Tbx3 significantly improves the quality of iPS cells. iPS cells generated with OSK and Tbx3 (OSKT) are superior in both germ-cell contribution to the gonads and germ-line transmission frequency. However, global gene expression profiling could not distinguish between OSK and OSKT iPS cells. Genome-wide chromatin immunoprecipitation sequencing analysis of Tbx3-binding sites in ESCs suggests that Tbx3 regulates pluripotency-associated and reprogramming factors, in addition to sharing many common downstream regulatory targets with Oct4, Sox2, Nanog and Smad1. This study underscores the intrinsic qualitative differences between iPS cells generated by different methods, and highlights the need to rigorously characterize iPS cells beyond in vitro studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901797/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901797/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Jianyong -- Yuan, Ping -- Yang, Henry -- Zhang, Jinqiu -- Soh, Boon Seng -- Li, Pin -- Lim, Siew Lan -- Cao, Suying -- Tay, Junliang -- Orlov, Yuriy L -- Lufkin, Thomas -- Ng, Huck-Hui -- Tam, Wai-Leong -- Lim, Bing -- AI54973/AI/NIAID NIH HHS/ -- DK047636/DK/NIDDK NIH HHS/ -- R01 AI054973-05/AI/NIAID NIH HHS/ -- R01 DK047636-08/DK/NIDDK NIH HHS/ -- England -- Nature. 2010 Feb 25;463(7284):1096-100. doi: 10.1038/nature08735. Epub 2010 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell and Developmental Biology, Genome Institute of Singapore, 138672, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20139965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Fusion ; Cellular Reprogramming ; Chimera/embryology/*metabolism ; Chromatin Immunoprecipitation ; Embryo, Mammalian/cytology ; Female ; Fibroblasts/cytology/metabolism ; Gene Expression Profiling ; Gene Expression Regulation/genetics ; Germ Cells/*cytology/*metabolism ; Gonads/*cytology ; Homeodomain Proteins/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Transgenic ; Octamer Transcription Factor-3/genetics/metabolism ; Regulatory Sequences, Nucleic Acid ; SOXB1 Transcription Factors/genetics/metabolism ; Smad1 Protein/metabolism ; T-Box Domain Proteins/genetics/*metabolism ; Transcription, Genetic/genetics ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...