ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Allium (mycorrhiza) ; Chitinase ; Enzyme localization (immunocytochemical) ; Glomus ; Mycorrhiza (vesicular-arbuscular)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chitinase (EC 3.2.1.14) activity was measured in roots of Allium prorrum L. (leek) during development of a vesicular-arbuscular mycorrhizal symbiosis with Glomus versiforme (Karst.) Berch. During the early stages of infection, between 10 and 20 d after inoculation, the specific activity of chitinase was higher in mycorrhizal roots than in the uninfected controls. However, 60–90 d after inoculation, when the symbiosis was fully established, the mycorrhizal roots contained much less chitinase than control roots. Chitinase was purified from A. porrum roots. An antiserum against beanleaf chitinase was found to cross-react specifically with chitinase in the extracts from non-mycorrhizal and mycorrhizal A. porrum roots. This antiserum was used for the immunocytochemical localization of the enzyme with fluorescent and gold-labelled probes. Chitinase was localized in the vacuoles and in the extracellular spaces of non-mycorrhizal and mycorrhizal roots. There was no immunolabelling on the fungal cell walls in the intercellular or the intracellular phases. It is concluded that the chitin in the fungal walls is inaccessible to plant chitinase. This casts doubts on the possible involvement of this hydrolase in the development of the mycorrhizal fungus. However, fungal penetration does appear to cause a typical defense response in the first stages that is later depressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Bradyrhizobium ; Chitinase ; Glycine (nodules) ; Hypersensitive reaction ; Peroxidase (isoenzymes)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chitinase and peroxidase, two enzymes thought to be involved in the defense of plants against pathogens, were measured in soybean (Glycine max L. Merr.) roots and in nodules colonized by Bradyrhizobium japonicum strains differing in their symbiotic potential. Activities of both enzymes were higher in nodules than in roots. In “effective”, nitrogen-fixing nodules, colonized by wild-type bacteria, chitinase and peroxidase activities had low levels in the central infected zone and were enhanced primarily in the nodule cortex. An ascorbate-specific peroxidase, possibly involved in radical scavenging, had similarly high activities in the infected zone and in the cortex. “Ineffective” nodules colonized by bacteria unable to fix nitrogen symbiotically showed a similar distribution of chitinase and peroxidase. In another type of “ineffective” nodule, colonized by a B. japonicum strain eliciting a hypersensitive response, activities of both enzymes were enhanced to a similar degree in the infected zone as well as in the cortex. Tissue prints using a direct assay for peroxidase and an antiserum against bean chitinase corroborated these results. The antiserum against bean chitinase cross-reacted with a nodule protein of Mr 32 000; it inhibited most of the chitinase activity in the nodules but barely affected the chitinase in uninfected roots. It is concluded that proteins characteristic of the defense reaction accumulate in the cortex of nodules independently of their ability to fix nitrogen, and in the entire body of hypersensitively reacting nodules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chitinase ; Elicitor ; Glucanase ; Pathogenesis-related proteins ; Puccinia ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pathogenesis-related expression of the two antifungal hydrolases β-1,3-glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) was studied in wheat (Triticum aestivum L.) as part of the defence response to stem rust (Puccinia graminis f.sp.tritici; Pgt), mediated by the semi-dominantly acting resistance genesSr5 andSr24. Complete resistance (infection type 0), mediated by theSr5 gene in cultivar Pre-Sr5, closely correlates with the hypersensitive response of penetrated cells at early stage of the interaction, when the first haustorium is formed. In contrast, cultivar Pre-Sr24 shows intermediate resistance (infection type 2–3) which is not directly linked to cell death. In both cases, the plant response included a rapid increase in β-1,3-glucanase activity between 24 and 48 h after inoculation. One main extracellular 30-kDa isoform of β-1,3-glucanase was present in both lines, as shown by polyacrylamide-gel electrophoresis. Two additional minor isoforms (32 and 23 kDa) were detected only in Pre-Sr24, and only at later time points. Increased enzyme activity and the appearance of new isoforms in the resistant lines was preceded by accumulation of mRNAs encoding β-1,3-glucanases and chitinases. However, there were no changes in chitinase activity or isoforms. A high constitutive level of chitinase activity was observed in all wheat genotypes. Serological studies indicated the presence of a class 11 chitinase of 26 kDa. Accumulation of β-1,3-glucanase and chitinase transcripts was detected before the pathogen penetrated the leaves through stomata and approximately 16 h before the typical hypersensitive response was observed, indicating that signal(s) for defense gene activation were recognised by the host plant long before a tight contact between the pathogen and a host cell is established. A glycoprotein (Pgt elicitor) derived from hyphal walls, strongly induced β-1,3-glucanase. We discuss the possible role of the elicitor in the early signalling mediatingSr5 andSr24-specified resistance in wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Chitinase ; C-terminal processing ; Gene-expression (transient) ; Intracellular transport ; Nicotiana ; Vacuole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dynamics of intracellular transport and processing of one of the vacuolar chitinases of tobacco (Nic-otiana tabacum L.), chitinase A (CHN A; EC 3.2.1.14), was investigated with pulse-chase experiments in conjunction with cell fractionation and immunoprecipitation. Mature CHN A is composed of two domains, the N-terminal cysteine-rich chitin-binding domain and the catalytic domain, linked by a short peptide spacer containing several hydroxyprolines. It is synthetized as a preproprotein with a signal peptide for cotranslational transport into the endoplasmic reticulum (ER) and a C-terminal, vacuolar targeting peptide (VTP) required for targeting to the vacuole, which is removed by proteolytic cleavage. We investigated transformed N. sylvestris plants constitutively expressing CHN A or a mutant CHN A lacking the chitin-binding domain and spacer (ΔCS CHN A), as well as N. plumbaginifolia protoplasts transiently expressing the same constructs. Processing and transport in the two systems was very similar. A shift in the apparent molecular weight of chitinase, indicative of prolyl hydroxylation, was detectable only 30 min after appearance of newly synthesized prochitinase, indicating that it might occur in a post-ER compartment. In total, labelled chitinase was detected in the microsomal fraction for up to 90–120 min as a prochitinase, bearing the VTP. Later, it appeared only in the soluble fraction (comprising the vacuolar sap) as the mature CHN A without the VTP. In both systems, intracellular transport and processing of ΔCS CHN A was faster than that of the wildtype form, indicating that correct folding of the cysteine-rich chitin-binding domain and/or prolyl hydroxylation of the spacer delays transport to the vacuole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: 1-Aminocyclopropane-1-carboxylic acid ; Chitinase ; β-1,3-Glucanase ; Ethylene ; Helianthus cell-suspension cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Auxin-dependent, heterotrophic suspension cells of sunflower (Helianthus annuus L. C.K. Spanners All-zweck) showed, on a cell-protein basis, a seven-fold increase in chitinase activity, which began 5 d after treatment with 10−5 mol·L−1 of the triazole-type growth retardant BAS 111.W. In proportion to this increase, chitinase activity appeared to be excreted into the culture medium. The intracellular activity of β-1,3-glucanase, assayed fluorimetrically with laminarin as the substrate, was only slightly enhanced. Dose-response experiments with BAS 111.W showed that the onset of the induction of chitinase activity coincided with an inhibition of ethylene formation and an accumulation of endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) as a result of blocking the conversion of ACC to ethylene. Other nitrogen-heterocyclic growth retardants (e.g. tetcyclacis, ancymidol), the triazole-type fungicide BAS 480.F, salicylic acid, CoCl2 and 2,4-dichlorophenoxy-acetic acid, which also increased the ACC/ethylene ratio, similarly induced chitinase activity. In contrast, aminoethoxy vinylglycine, which simultaneously lowered endogenous ACC and ethylene formation, did not stimulate chitinase activity. However, after addition of BAS 111.W and ACC, an accumulation of endogenous ACC was accompanied by a strong induction of the enzymatic activity. This effect did not correlate with changes in the cell culture growth nor in the cellular contents of immunoreactive abscisic acid, 3-indoleacetic acid, gibberellins or cytokinins. Furthermore, ethephon, which chemically generates ethylene, led to a slight reduction in ACC levels and tended to decrease chitinase activity relative to the control. In conclusion, it is hypothesized that the induction of chitinase activity in sunflower cell suspensions is antagonistically regulated by ethylene and ACC. At least at higher production rates, ethylene appears to function as an inhibiting factor whereas ACC may be a promoting one. The stimulation of chitinase and β-1,3-glucanase activity, caused by the retardant BAS 111.W and the fungicide BAS 480.F, is discussed as an additional effect of both compounds which possibly leads to an increased resistance of plants to fungal infections.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Chitinase ; Defense (against bacteria, fungi) ; Enzyme induction ; Ethylene ; Lysozyme ; Phaseolus (chitinase)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ethylene induced an endochitinase in primary leaves of Phaseolus vulgaris L. The enzyme formed chitobiose and higher chitin oligosaccharides from insoluble, colloidal or regenerated chitin. Less than 5% of the total chitinolytic activity was detected in an exochitinase assay proposed by Abeles et al. (1970, Plant Physiol. 47, 129–134) for ethylene-induced chitinase. In ethylene-treated plants, chitinase activity started to increase after a lag of 6 h and was induced 30 fold within 24 h. Exogenously supplied ethylene at 1 nl ml−1 was sufficient for half-maximal induction, and enhancement of the endogenous ethylene formation also enhanced chitinase activity. Cycloheximide prevented the induction. Among various hydrolases tested, only chitinase and, to a lesser extent, β-1,3-glucanase were induced by ethylene. Induction of chitinase by ethylene occurred in many different plant species. Ethylene-induced chitinase was purified by affinity chromatography on a column of regenerated chitin. Its apparent molecular weight obtained by sodium dodecyl sulfate-gel electrophoresis was 30,000; the molecular weight determined from filtration through Sephadex G-75 was 22,000. The purified enzyme attacked chitin in isolated cell walls of Fusarium solani. It also acted as a lysozyme when incubated with Micrococcus lysodeikticus. It is concluded that ethylene-induced chitinase functions as a defense enzyme against fungal and bacterial invaders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Planta 174 (1988), S. 364-372 
    ISSN: 1432-2048
    Keywords: Chitinase ; Enzyme regulation (ethylene) ; Ethylene (enzyme regulation) ; β-1,3-Glucanase ; Hydrolase (antifungal) ; Phaseolus (ethylene-regulated enzymes)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ethylene induced chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.29) to a similar extent in primary leaves of bean seedlings (Phaseolus vulgaris cv. Saxa). Both enzymes were purified from ethylene-treated leaves, and monospecific antibodies were raised aginst them. Ethylene treatments strongly increased the amount of immunore-active chitinase and β-1,3-glucanase. Ethylene enhanced synthesis of chitinase in vivo, as tested by immunoprecipitation after pulse-labelling with [35S]methionine. RNA was isolated from bean leaves and translated in a rabbit reticulocyte lysate system in vitro. The chitinase and the β-1,3-glucanase antiserum each precipitated a single polypeptide from the translation products. The precipitated polypeptides were 1500 and 4000 daltons larger, respectively, than native chitinase and native β-1,3-glucanase, indicating that the two enzymes were synthesized as precursors in vitro. The translatable mRNAs for both enzymes increased at least tenfold within 2 h in response to a treatment with ethylene. When ethylene was withdrawn after 8 h of incubation, the translatable mRNAs for both enzymes decreased somewhat more slowly, reaching the basal level about 25 h later. In all cases, there was a close correlation between the levels of translatable mRNA for chitinase and β-1,3-glucanase. A putative β-1,3-glucanase cDNA clone, pCH16, was isolated by hybrid-selected translation. The amount of β-1,3-glucanase mRNA, as measured by RNA blot analysis using pCH16 as a probe, increased rapidly in response to ethylene and decreased again after withdrawal of ethylene, indicating that the amount of hybridizable RNA and of translatable mRNA for β-1,3-glucanase were correlated. In conclusion, the results indicate that chitinase and β-1,3-glucanase are regulated co-ordinately at the level of mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 171 (1992), S. 34-43 
    ISSN: 1615-6102
    Keywords: Fungal growth ; Chitinase ; β-1,3-Glucanase ; Antifungal hydrolases ; Pea ; Trichoderma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plant chitinases and β-1,3-glucanases have been demonstrated to inhibit fungal growth in model experiments, both on agar plates or in liquid media. Here,Trichoderma longibrachiatum was taken as a model to study the morphological changes caused by chitinase and glucanase treatments, using cytochemical techniques in combination with fluorescence and electron microscopy. Chitinase, alone or in the presence of glucanase, arrested growth of the hypha: it affected the extreme tip of the fungus producing a thinning of the wall, a balloon-like swelling and a rupture of the plasma membrane. Chitin and glucans were present in the wall, as shown by lectinand enzyme-binding experiments, but they had a different susceptibility to chitinase and β-1,3-glucanase. Chitin was present at the apex and in the inner parts of the lateral walls; it was more susceptible to chitinase at the tip than in the subapical part. Glucans mostly occurred on the outer layer where they were degraded by glucanase. The latter did not affect the inner hyphal skeleton. It is suggested that the growth inhibition ofTrichoderma by hydrolytic enzymes is the consequence of a thinning of the cell wall in the hyphal apex, leading to an imbalance of turgor pressure and wall tension which causes the tip to swell and to burst.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...