ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-15
    Description: Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern molecules, which can trigger the rejection of tumours by the immune system. Thus, the counter-activation of tolerance mechanisms at the site of tumour hypoxia would be a crucial condition for maintaining the immunological escape of tumours. However, a direct link between tumour hypoxia and tolerance through the recruitment of regulatory cells has not been established. We proposed that tumour hypoxia induces the expression of chemotactic factors that promote tolerance. Here we show that tumour hypoxia promotes the recruitment of regulatory T (T(reg)) cells through induction of expression of the chemokine CC-chemokine ligand 28 (CCL28), which, in turn, promotes tumour tolerance and angiogenesis. Thus, peripheral immune tolerance and angiogenesis programs are closely connected and cooperate to sustain tumour growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Facciabene, Andrea -- Peng, Xiaohui -- Hagemann, Ian S -- Balint, Klara -- Barchetti, Andrea -- Wang, Li-Ping -- Gimotty, Phyllis A -- Gilks, C Blake -- Lal, Priti -- Zhang, Lin -- Coukos, George -- P01-CA83638/CA/NCI NIH HHS/ -- R01-CA116779/CA/NCI NIH HHS/ -- England -- Nature. 2011 Jul 13;475(7355):226-30. doi: 10.1038/nature10169.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21753853" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Hypoxia/genetics ; Cell Line, Tumor ; Chemokines, CC/genetics/*metabolism ; Culture Media, Conditioned/pharmacology ; Disease Progression ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Immune Tolerance/*immunology ; Mice ; Mice, Inbred C57BL ; *Neovascularization, Pathologic ; Ovarian Neoplasms/*blood supply/immunology/*metabolism/pathology ; Receptors, CCR10/metabolism ; T-Lymphocytes, Regulatory/drug effects/*immunology/metabolism ; Vascular Endothelial Growth Factor A/metabolism/secretion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...